Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern testing new hybrid hearing device combining advantages of hearing aids, implants

21.04.2008
A new hybrid hearing aid/cochlear implant device designed for patients who can benefit from both is being evaluated by UT Southwestern Medical Center otolaryngologists, as part of a multisite, national study.

The cross-breed device, called the DUET Electric-Acoustic System, or EAS, is already used in Europe, but not yet approved for use in the U.S. It targets a population currently falling through the cracks — borderline cases for which hearing aids don’t adequately distinguish sounds, but for who some natural hearing remains. For these individuals, cochlear implants that entirely replace natural hearing aren’t recommended either.

Hearing aids are typically worn on the outside of the ear by people who still have some natural hearing. Cochlear implants are surgically implanted into the ear and pick up lost middle- and higher-frequency sounds. They replace lost natural hearing by digitizing electrical impulses sent to the brain via wires implanted in the ear. The brain then interprets that as sound.

Most people with hearing difficulties have one or the other device, but not both.

Initial studies on the hybrid device suggest there is a synergistic effect achieved by maintaining the natural hearing and coupling it with the cochlear implant, particularly for distinguishing speech in noisy environments. The device both amplifies low frequencies and electronically stimulates middle and high frequencies.

The implant is specifically designed with a thin electrode to occupy less space in the inner ear. It is implanted by special surgical techniques to preserve natural hearing.

“What patients can hope to get from the investigational device is a significant improvement in the ability to understand speech, especially in a noisy situation,” said Dr. Peter Roland, chairman of otolaryngology-head and neck surgery at UT Southwestern.

The device is made by MED-EL Corp., which conducts the initial patient screening for the trial. The device is still investigational, so all of the potential risks are not known, Dr. Roland said. The most common serious complication is loss of what hearing is left in the ear that receives the implant. The opposite ear is unaffected. Significant hearing loss has occurred in 10 percent to 15 percent of recipients to date.

UT Southwestern is among about a dozen sites participating in the national trial. UT Southwestern researchers are seeking about a dozen participants, said Dr. Roland.

Potential study participants must be at least 18 years old, have moderate sloping to severe profound hearing loss, and have had minimal results from traditional hearing aids. Patients appropriate for the study will still have some natural hearing left but find themselves struggling to understand loud speech, particularly in noisy, crowded situations, even while wearing high-quality hearing aids. The target patient has hearing loss in high frequencies, but also requires a hearing aid to boost low-frequency sound.

“We need people who are not getting enough benefit from their hearing aids to live normal lives, but who are not quite deaf enough for a regular cochlear implant,” explained Dr. Roland.

Approved study participants will be asked to provide their current hearing test results for review and will be retested if the initial results fit the profile. If approved, the new device will be implanted behind the ear during a two-hour outpatient surgery. Local participants then will have several follow-up visits at UT Southwestern to evaluate how the device is working. The surgery and follow-up care — taking place over about a 15-month period — is provided without charge to participants.

Potential trial candidates can call 214-648-7151 or e-mail betty.loy@utsouthwestern.edu.

Visit http://www.utsouthwestern.org/earnosethroat to learn more about
UT Southwestern’s clinical services in otolaryngology.

Russell Rian | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>