Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless EEG system self-powered by body heat and light

10.04.2008
In the framework of Holst Centre, IMEC has developed a battery-free wireless 2-channel EEG* system powered by a hybrid power supply using body heat and ambient light.

The hybrid power supply combines a thermoelectric generator that uses the heat dissipated from a person’s temples and silicon photovoltaic cells. The entire system is wearable and integrated into a device resembling headphones. The system can provide more than 1mW on average indoor, which is more than enough for the targeted application.

Thermoelectric generators using body heat typically show a drop in generated power when the ambient temperature is in range of the body temperature. Especially outside, the photovoltaic cells in the hybrid system counter this energy drop and ensure a continuous power generation. Moreover, they serve as part of the radiators for the thermoelectric generator, which are required to obtain high efficiency.

Compared to a previous EEG demonstrator developed within Holst Centre, which was solely powered by thermoelectric generators positioned on the forehead, the hybrid system has a reduced size and weight. Combined with full autonomous operation, no maintenance and an acceptable low heat flow from the head, it further increases the patient’s autonomy and quality of life. Potential applications are detection of imbalance between the two halves of the brain, detection of certain kinds of brain trauma and monitoring of brain activity.

The system is a tangible demonstrator of Holst Centre’s Human++ program researching healthcare, lifestyle and sport applications of body area networks. Future research targets further reduction of the power consumption of the different system components of the body area network as well as a significant reduction of the production cost by using micromachining. Interested parties can get more insight in this research or license the underlying technologies through membership of the program.

Technical details
The thermoelectric generator is composed of six thermoelectric units made up from miniature commercial thermopiles. Each of the two radiators, on left and right sides of the head, has an external area of 4×8cm² that is made of high-efficiency Si photovoltaic cells. Further, thermally conductive comb-type structures (so-called thermal shunts) have been used to eliminate the thermal barrier between the skin and the thermopiles that is caused by the person’s hair on the thermoelectric generator.

The EEG system uses IMEC’s proprietary ultra-low-power biopotential readout application-specific integrated circuit (ASIC) to extract high-quality EEG signals with micro-power consumption. A low-power digital-signal processing block encodes the extracted EEG data, which are sent to a PC via a 2.4GHz wireless radio link. The whole system consumes only 0.8mW, well below the power produced to provide full autonomy.

* electroencephalography or monitoring of brain waves

Katrien Marent | alfa
Further information:
http://www.imec.be/wwwinter/mediacenter/en/SSI_2008.shtml

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>