Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug-coated balloon overcomes in-stent restenosis

02.04.2008
Novel balloon catheter appears simpler, more effective than drug-eluting stent

An angioplasty balloon coated with a drug that reduces renarrowing of the coronary arteries appears to be more effective than a drug-eluting stent in treating an unwanted build-up of tissue inside a bare-metal coronary stent.

After six months, the newly expanded artery remained more widely open within the stent after treatment with the paclitaxel-eluting balloon when compared to a paclitaxel-eluting stent, according to the Paclitaxel-Eluting PTCA-Balloon Catheter in Coronary Artery Disease II-In-Stent Restenosis (PEPCAD II-ISR) study. Additional data suggested that at one year, rates of major cardiac events were also lower with the drug-coated balloon.

The PEPCAD II-ISR study is being reported today at the SCAI Annual Scientific Sessions in Partnership with ACC i2 Summit (SCAI-ACCi2) in Chicago. SCAI-ACCi2 is a scientific meeting for practicing cardiovascular interventionalists sponsored by the Society for Cardiovascular Angiography and Interventions (SCAI) in partnership with the American College of Cardiology (ACC).

“This drug-eluting balloon clearly qualifies for consideration as an alternative to drug-eluting stents for the treatment of restenosis inside bare-metal stents,” said Martin Unverdorben, MD, PhD, an associate professor of medicine at the University of Frankfurt/Main, Germany. “However, two to three years’ more data are required before making a definitive statement.”

In-stent restenosis remains a challenge, despite the availability of drug-eluting stents. Approximately 25 percent of patients treated with a bare-metal stent and about 10 percent of patients treated with a drug-eluting stent develop an overgrowth of vascular tissue and renarrowing inside the stent, or in-stent restenosis.

Treating in-stent restenosis with a drug-eluting stent is a complex procedure that adds another layer of metal to the artery and can create mechanical problems. The Sequent® Please drug-eluting balloon may offer a simpler alternative. This drug-eluting balloon is coated with paclitaxel, the same medication that coats the Taxus™ stent. The balloon is inflated for about 30 seconds inside the narrowed artery, and the paclitaxel—which has a natural attraction to cells—quickly moves from the surface of the balloon into the arterial cells.

Not only does the drug-eluting balloon avoid a second layer of metal inside the artery, the carrier that is used to bind paclitaxel to the balloon is iopromide, a commonly used contrast agent. This avoids concerns about the artery’s reaction to the polymers used to bind paclitaxel and other anti-restenosis medications to drug-eluting stents.

The study was conducted at the Center for Cardiovascular Diseases in Rotenburg an der Fulda, Germany. Dr. Unverdorben and his colleagues recruited 131 patients with restenosis in a bare-metal stent, randomly assigning them to treatment with the Sequent® Please drug-eluting balloon (DEB) or the Taxus™ drug-eluting stent (DES). Five patients were excluded for protocol violations, and four patients in the stent group were actually treated with the drug-eluting balloon. This left, for the “as-treated” analysis, 66 patients in the DEB group and 60 patients in the DES group.

The researchers initially analyzed the data according to each patient’s original treatment assignment (the intention-to-treat analysis). After an average of six months of follow-up, late-lumen loss—the amount of tissue that grew from the vessel wall into the arterial lumen—was significantly less in the patients treated with the DEB (0.20 mm vs. 0.45 mm, p=0.02). When the data were analyzed according the treatment each patient actually received, the results were even more promising. Late-lumen loss remained significantly better with the drug-eluting balloon. In addition, a finding of significant renarrowing in the treated segment was less common in the DEB group (3.4 percent vs. 20.4 percent, p=0.007), as was the need for a repeat procedure to re-treat the target lesion (3.1 percent vs. 16.7 percent, p=0.02). Combined rates of major cardiovascular events, defined as heart attack, repeat procedure to treat the target lesion and cardiac death were 4.7 percent and 18.3 percent, respectively (p=0.02).

Between six and 12 months, two patients in the DEB group needed PCI in another artery, and one patient (1.5 percent) needed yet another PCI to treat the original target lesion. In the DES group, two patients died of noncardiac causes, and three patients (5 percent) needed repeat target-lesion PCI. No new patients experienced a major cardiac event.

At 12 months, there was a trend toward better event-free survival in patients treated with the DEB in the intention-to-treat analysis. The difference was statistically significant (p=0.01) when the analysis was done according to the as-treated analysis.

Dr. Unverdorben will present the results of the "Paclitaxel-Eluting PTCA-Balloon Catheter in Coronary Artery Disease II-In-Stent Restenosis” (PEPCAD II-ISR) study on Monday, March 31 at 9:00 a.m. CDT in the Grand Ballroom, S100.

Kathy Boyd David | EurekAlert!
Further information:
http://www.scai.org
http://www.webershandwick.com/

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>