Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug-coated balloon overcomes in-stent restenosis

02.04.2008
Novel balloon catheter appears simpler, more effective than drug-eluting stent

An angioplasty balloon coated with a drug that reduces renarrowing of the coronary arteries appears to be more effective than a drug-eluting stent in treating an unwanted build-up of tissue inside a bare-metal coronary stent.

After six months, the newly expanded artery remained more widely open within the stent after treatment with the paclitaxel-eluting balloon when compared to a paclitaxel-eluting stent, according to the Paclitaxel-Eluting PTCA-Balloon Catheter in Coronary Artery Disease II-In-Stent Restenosis (PEPCAD II-ISR) study. Additional data suggested that at one year, rates of major cardiac events were also lower with the drug-coated balloon.

The PEPCAD II-ISR study is being reported today at the SCAI Annual Scientific Sessions in Partnership with ACC i2 Summit (SCAI-ACCi2) in Chicago. SCAI-ACCi2 is a scientific meeting for practicing cardiovascular interventionalists sponsored by the Society for Cardiovascular Angiography and Interventions (SCAI) in partnership with the American College of Cardiology (ACC).

“This drug-eluting balloon clearly qualifies for consideration as an alternative to drug-eluting stents for the treatment of restenosis inside bare-metal stents,” said Martin Unverdorben, MD, PhD, an associate professor of medicine at the University of Frankfurt/Main, Germany. “However, two to three years’ more data are required before making a definitive statement.”

In-stent restenosis remains a challenge, despite the availability of drug-eluting stents. Approximately 25 percent of patients treated with a bare-metal stent and about 10 percent of patients treated with a drug-eluting stent develop an overgrowth of vascular tissue and renarrowing inside the stent, or in-stent restenosis.

Treating in-stent restenosis with a drug-eluting stent is a complex procedure that adds another layer of metal to the artery and can create mechanical problems. The Sequent® Please drug-eluting balloon may offer a simpler alternative. This drug-eluting balloon is coated with paclitaxel, the same medication that coats the Taxus™ stent. The balloon is inflated for about 30 seconds inside the narrowed artery, and the paclitaxel—which has a natural attraction to cells—quickly moves from the surface of the balloon into the arterial cells.

Not only does the drug-eluting balloon avoid a second layer of metal inside the artery, the carrier that is used to bind paclitaxel to the balloon is iopromide, a commonly used contrast agent. This avoids concerns about the artery’s reaction to the polymers used to bind paclitaxel and other anti-restenosis medications to drug-eluting stents.

The study was conducted at the Center for Cardiovascular Diseases in Rotenburg an der Fulda, Germany. Dr. Unverdorben and his colleagues recruited 131 patients with restenosis in a bare-metal stent, randomly assigning them to treatment with the Sequent® Please drug-eluting balloon (DEB) or the Taxus™ drug-eluting stent (DES). Five patients were excluded for protocol violations, and four patients in the stent group were actually treated with the drug-eluting balloon. This left, for the “as-treated” analysis, 66 patients in the DEB group and 60 patients in the DES group.

The researchers initially analyzed the data according to each patient’s original treatment assignment (the intention-to-treat analysis). After an average of six months of follow-up, late-lumen loss—the amount of tissue that grew from the vessel wall into the arterial lumen—was significantly less in the patients treated with the DEB (0.20 mm vs. 0.45 mm, p=0.02). When the data were analyzed according the treatment each patient actually received, the results were even more promising. Late-lumen loss remained significantly better with the drug-eluting balloon. In addition, a finding of significant renarrowing in the treated segment was less common in the DEB group (3.4 percent vs. 20.4 percent, p=0.007), as was the need for a repeat procedure to re-treat the target lesion (3.1 percent vs. 16.7 percent, p=0.02). Combined rates of major cardiovascular events, defined as heart attack, repeat procedure to treat the target lesion and cardiac death were 4.7 percent and 18.3 percent, respectively (p=0.02).

Between six and 12 months, two patients in the DEB group needed PCI in another artery, and one patient (1.5 percent) needed yet another PCI to treat the original target lesion. In the DES group, two patients died of noncardiac causes, and three patients (5 percent) needed repeat target-lesion PCI. No new patients experienced a major cardiac event.

At 12 months, there was a trend toward better event-free survival in patients treated with the DEB in the intention-to-treat analysis. The difference was statistically significant (p=0.01) when the analysis was done according to the as-treated analysis.

Dr. Unverdorben will present the results of the "Paclitaxel-Eluting PTCA-Balloon Catheter in Coronary Artery Disease II-In-Stent Restenosis” (PEPCAD II-ISR) study on Monday, March 31 at 9:00 a.m. CDT in the Grand Ballroom, S100.

Kathy Boyd David | EurekAlert!
Further information:
http://www.scai.org
http://www.webershandwick.com/

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>