Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New techniques improve imaging quality, not diagnosis of Barrett's esophagus

13.03.2008
Novel techniques to improve the quality of imaging are helping doctors get a better look at esophageal conditions such as Barrett’s esophagus (BE), but they do not necessarily improve the diagnosis or physician agreement on images, according to a study published this month in Gastroenterology, the official journal of the American Gastroenterological Association (AGA) Institute.

Researchers from the study found that the image quality of magnified images of BE that are obtained with new imaging techniques was preferred both by expert and by non-expert endoscopists. However, this higher preference did not lead to more agreement on features of interest and did not improve their ability to diagnose esophageal abnormalities.

“We know that novel technologies are dramatically improving image quality, which in turn has improved the diagnostic potential of minimally invasive techniques. But we need to review these techniques to fully understand if they deliver a clinical benefit rather than just a clearer image,” said Jacques Bergman, MD, PhD, from the Academic Medical Center in the Netherlands and lead author of the study. “In our opinion, the subjective improvement of image quality with enhancement techniques may have limited clinical relevance in this particular setting.”

In this study, the research team compared images obtained with magnifying high-resolution white light endoscopy (WLE, a standard endoscopic process), narrow band imaging (NBI), indigo carmine chromoendoscopy (ICC) and acetic acid chromoendoscopy (AAC) to determine the best techniques for detailed evaluation of BE characteristics. The team evaluated the improved quality of the images and sought to determine if the addition of these enhancement techniques would improve the agreement between observers for distinct features of disease as well as their ability to correctly identify abnormal areas. Because dysplastic and non-dysplastic BE features are associated with different visual characteristics (mucosal and vascular patterns and/or the presence of abnormal blood vessels), the type of imaging may offer improved visual diagnosis of abnormalities in the esophageal mucosal tissue.

When the enhancement techniques were compared with regular WLE images, the observers clearly preferred the enhancement techniques, which scored higher in terms of overall image quality, the quality of mucosal imaging, and the quality of vascular imaging. NBI and AAC were the most often preferred techniques and were rated best for overall image quality (43 and 40 percent of comparisons, respectively). WLE and ICC were ranked most often as the worst techniques (38 and 39 percent of comparisons, respectively). All three enhancement techniques (NBI, ICC or AAC) scored better than WLE for most image quality characteristics, but AAC rated the highest for mucosal image quality (80 percent of evaluations scored better than WLE), while NBI rated the highest for vascular image quality (60 percent of evaluations scored better than WLE).

However, the study found that the higher image quality did not translate into a clinically relevant benefit. The observer agreement was moderate on the three factors assessed on the WLE images (mucosal irregularity, vascular irregularity or the presence of abnormal blood vessels), and when WLE was combined with NBI, ICC or AAC, observer agreement did not improve. More so, expert and non-expert endoscopists did not agree more on their interpretation even when they compared all images obtained with additive techniques to WLE images of the same area.

Adding enhancement techniques also did not improve the diagnosis of neoplasia in the study. The yield for identifying early neoplasia with white light images was 86 percent for all observers, 90 percent for experts and 84 percent for non-experts, and when comparing all images, yield ranged from 70 to 86 percent for all observers. The researchers speculated on the possibility that most of the essential information may already have been present in the high-quality WLE images, or that the interpretation of the images may vary widely amongst endoscopists, which may explain the finding that expert endoscopists had a lower agreement for mucosal patterns compared to non-experts (ê = 0.43 vs. ê = 0.64).

Participants in the study were undergoing either surveillance endoscopies of known BE or work-ups of high-grade intraepithelial neoplasia (HGIN, a precancerous condition) or early cancer (EC). Conditions diagnosed in study patients included eight areas with HGIN/EC, one with low grade dysplasia, one with indefinite for dysplasia and 12 areas with non-dysplastic BE. After each patient received endoscopic imaging using WLE and each additive technique, the highest quality image from each technique was selected for analysis. The images were evaluated by seven endoscopists with no specific expertise in BE or advanced endoscopic imaging techniques and five endoscopists with experience in advanced imaging techniques and in BE to compare expert versus non-expert opinions.

Chromoendoscopy is a technique in which staining agents are applied to the gastrointestinal tract to improve the images of the esophageal mucosa captured during endoscopies. The stains enable technicians to see surface patterns or functional characteristics that may suggest early neoplasia, lesions that are difficult to detect with standard endoscopy. Recently, a new optical technique, NBI, was developed that uses light that penetrates the tissue at varying levels depending on the chosen wavelength. Light of a short wavelength (e.g. blue light in the visible spectrum) penetrates very little, allowing for improved surface detail imaging. Two other additives were applied to chromoendoscopy for this study – ICC and AAC.

Aimee Frank | EurekAlert!
Further information:
http://www.gastro.org

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>