Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding cancer at an early stage

29.02.2008
New ultrasound technology will make it possible for doctors to discover cancer tumors far earlier than before.

A method that transmits new and more advanced ultrasound signals is being tested in Trondheim. The chances of discovering and diagnosing tumors in the prostate and breast will improve significantly.

- The first clinical testing has been done, and the results so far are promising, says Rune Hansen. He is a researcher at Norwegian University of Science and Technology (NTNU) and at SINTEF Health Research.

A veil of noise

The ultrasound images that are processed using current methods are often strongly hampered by a kind of noise that originates from sound signals that move back and forth between reflectors that are dissimilar in strength. This is called ‘multiple echo’ or ‘reverberations’ in technical terms. This is particularly a problem when the signal is being sent through the ‘body wall’ in order to image internal organs in the body.

The sound signals will ricochet back and forth between layers of fat, muscles and connective tissue in the body wall, and this results in misty ultrasound images.

The new method that is being processed is far more detailed, and it will be possible to separate details in parts of the body such as the liver, prostate and breast. This makes it easier to discover changes in body tissue, and he chance of discovering cancer tumors at an early stage will increase significantly.

Detailed images

In addition to giving a more detailed images of body tissue, the new ultrasound method is also much better at discovering and reading contrast agents. Such liquid is given intravenously and this makes perfusion imaging possible in organs that are suspected being cancerous.

- Tumors generate their own veins in order to obtain sufficient oxygen and nutrients so they are able to grow. This method has the potential to discover these changes in micro circulation much earlier than at present, says RuneHansen.

Three forms of cancer where the new method will make it possible to discover cancers at an earlier stage are prostate, breast and thyroid gland cancers. Another area of application is diagnoses of cardiovascular diseases like heart diseases and plaque/stenoses/anurism in large arteries.

Transmission in two signals

The newly developed method has been given the name ‘SURF imaging’ – Second order UltRasound Field imaging.

When one applyes the traditional method, an imaging pulse is inserted, and the subsequent ‘echo’ that is heard is the basis of the ultrasound image. The important new factor is that the imaging pulse is accompanied by another signal.

Rune Hansen is a part of a team under Professor Bjørn Angelsen, who is one of the pioneers in ultrasound research in Trondheim. Professor Angelsen assumes that the method will be ready for normal use on the first patients in about a year’s time.

By Tore Oksholen/Gemini

Nina Tveter | alfa
Further information:
http://www.ntnu.no

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>