Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sheffield engineers have big ideas for the latest in medical scanners

14.02.2008
Engineers at the University of Sheffield and STFC Rutherford-Appleton Laboratories have developed one of the World´s largest imagers that could form the heart of future medical scanners. The new technology will allow doctors to produce more sensitive and faster images of the human body at a lower-cost to the healthcare profession.

The innovative technology, which has been developed as part of the £4.5m Basic Technology MI-3 Consortium, will help in providing instant analysis of medical screening tests and the early detection of cancer.

Easier to use and faster than the imagers used in current body scanners, and with very large active pixel sensors with an imaging area of approximately 6cm square, the technology has been specifically developed to meet demanding clinical applications such as x-ray imaging and mammography. This silicon imager is about 15 times larger in area than the latest Intel processors.

The next step of the project is to produce wafer-scale imagers which can produce images that approach the width of the human torso. This will eliminate the need for expensive and inefficient lenses and so enable lower-cost, more sensitive and faster medical imaging systems.

Professor Nigel Allinson, from the University´s Vision and Information Engineering Group in the Department of Electronic and Electrical Engineering and who led the project, said: "Very large active pixel sensors could soon be making a major impact on medical imaging by further reducing the need for the old technology of film. The UK is a World-lead in such sensors for scientific and medical applications and this is a lead we intend to maintain."

Dr Renato Turchetta, leader of the design team, added: "Wafer-scale CMOS sensors are now a reality and the team is ready to take the digital revolution a step further in order to revolutionise scientific and medical imaging."

Notes for Editors: MI-3 is a four-year £4.5m project funded by the UK Research Council Basic Technology programme. The consortium consists of leading groups in detector technology, microelectronics, particle physics, space science, bio-sciences and medical physics at the Universities of Sheffield, Glasgow, Liverpool, Surrey, York, Brunel University, University College London, Medical Research Council Laboratory of Molecular Biology (Cambridge), Institute of Cancer Research, and Science and Technology Facilities Council (STFC) Rutherford-Appleton Laboratory. The consortium is led by the University of Sheffield.

These sensors were developed by the CMOS Sensor Design Group at STFC´s Rutherford Appleton Laboratory in association with the University of Sheffield and University College London.

For further information please contact: Lindsey Bird, Media Relations Officer on 0114 2225338 or email l.bird@sheffield.ac.uk

Lindsey Bird | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>