Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sheffield engineers have big ideas for the latest in medical scanners

14.02.2008
Engineers at the University of Sheffield and STFC Rutherford-Appleton Laboratories have developed one of the World´s largest imagers that could form the heart of future medical scanners. The new technology will allow doctors to produce more sensitive and faster images of the human body at a lower-cost to the healthcare profession.

The innovative technology, which has been developed as part of the £4.5m Basic Technology MI-3 Consortium, will help in providing instant analysis of medical screening tests and the early detection of cancer.

Easier to use and faster than the imagers used in current body scanners, and with very large active pixel sensors with an imaging area of approximately 6cm square, the technology has been specifically developed to meet demanding clinical applications such as x-ray imaging and mammography. This silicon imager is about 15 times larger in area than the latest Intel processors.

The next step of the project is to produce wafer-scale imagers which can produce images that approach the width of the human torso. This will eliminate the need for expensive and inefficient lenses and so enable lower-cost, more sensitive and faster medical imaging systems.

Professor Nigel Allinson, from the University´s Vision and Information Engineering Group in the Department of Electronic and Electrical Engineering and who led the project, said: "Very large active pixel sensors could soon be making a major impact on medical imaging by further reducing the need for the old technology of film. The UK is a World-lead in such sensors for scientific and medical applications and this is a lead we intend to maintain."

Dr Renato Turchetta, leader of the design team, added: "Wafer-scale CMOS sensors are now a reality and the team is ready to take the digital revolution a step further in order to revolutionise scientific and medical imaging."

Notes for Editors: MI-3 is a four-year £4.5m project funded by the UK Research Council Basic Technology programme. The consortium consists of leading groups in detector technology, microelectronics, particle physics, space science, bio-sciences and medical physics at the Universities of Sheffield, Glasgow, Liverpool, Surrey, York, Brunel University, University College London, Medical Research Council Laboratory of Molecular Biology (Cambridge), Institute of Cancer Research, and Science and Technology Facilities Council (STFC) Rutherford-Appleton Laboratory. The consortium is led by the University of Sheffield.

These sensors were developed by the CMOS Sensor Design Group at STFC´s Rutherford Appleton Laboratory in association with the University of Sheffield and University College London.

For further information please contact: Lindsey Bird, Media Relations Officer on 0114 2225338 or email l.bird@sheffield.ac.uk

Lindsey Bird | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>