Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sheffield engineers have big ideas for the latest in medical scanners

14.02.2008
Engineers at the University of Sheffield and STFC Rutherford-Appleton Laboratories have developed one of the World´s largest imagers that could form the heart of future medical scanners. The new technology will allow doctors to produce more sensitive and faster images of the human body at a lower-cost to the healthcare profession.

The innovative technology, which has been developed as part of the £4.5m Basic Technology MI-3 Consortium, will help in providing instant analysis of medical screening tests and the early detection of cancer.

Easier to use and faster than the imagers used in current body scanners, and with very large active pixel sensors with an imaging area of approximately 6cm square, the technology has been specifically developed to meet demanding clinical applications such as x-ray imaging and mammography. This silicon imager is about 15 times larger in area than the latest Intel processors.

The next step of the project is to produce wafer-scale imagers which can produce images that approach the width of the human torso. This will eliminate the need for expensive and inefficient lenses and so enable lower-cost, more sensitive and faster medical imaging systems.

Professor Nigel Allinson, from the University´s Vision and Information Engineering Group in the Department of Electronic and Electrical Engineering and who led the project, said: "Very large active pixel sensors could soon be making a major impact on medical imaging by further reducing the need for the old technology of film. The UK is a World-lead in such sensors for scientific and medical applications and this is a lead we intend to maintain."

Dr Renato Turchetta, leader of the design team, added: "Wafer-scale CMOS sensors are now a reality and the team is ready to take the digital revolution a step further in order to revolutionise scientific and medical imaging."

Notes for Editors: MI-3 is a four-year £4.5m project funded by the UK Research Council Basic Technology programme. The consortium consists of leading groups in detector technology, microelectronics, particle physics, space science, bio-sciences and medical physics at the Universities of Sheffield, Glasgow, Liverpool, Surrey, York, Brunel University, University College London, Medical Research Council Laboratory of Molecular Biology (Cambridge), Institute of Cancer Research, and Science and Technology Facilities Council (STFC) Rutherford-Appleton Laboratory. The consortium is led by the University of Sheffield.

These sensors were developed by the CMOS Sensor Design Group at STFC´s Rutherford Appleton Laboratory in association with the University of Sheffield and University College London.

For further information please contact: Lindsey Bird, Media Relations Officer on 0114 2225338 or email l.bird@sheffield.ac.uk

Lindsey Bird | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>