Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Web will work wonders for the faint hearted

14.02.2008
A new device could put the beat back into weak hearts - and free patients from a lifetime of anti-rejection drugs

Current implanted heart assist devices function by sucking blood from the ventricles and then expelling it into downstream vessels. Whilst these have been successful in prolonging the lives of heart patients, they come into contact with the blood stream and hence require life-long drug therapy to suppress the immune system and prevent blood clotting. In addition, many of these devices use high speed turbines to produce the pumping force, and this has been proven to cause damage to cells within the blood increasing the chance of clots forming.

The ingenious device being developed by engineers at the University of Leeds provides a less invasive alternative. The team has developed a specially-woven web made from biocompatible material which will not be rejected by the body.

The webbing wraps around the heart and therefore does not come into contact with the blood stream. Inbuilt sensors recognise when the heart wants to beat and trigger a series of miniature motors which cause the web to contract – increasing the internal pressure and assisting the heart to pump the blood around the body.

The team consists of Drs Peter Walker (who devised the original concept) and Martin Levesley from the University’s School of Mechanical Engineering, cardiac consultants Kevin Watterson and Osama Jaber from Leeds General Infirmary and engineering PhD student David Keeling. The research has been funded by Leeds-based medical charity Heart Research UK.

“It’s a really simple concept that works in the same way as when you squeeze a plastic bottle, forcing the liquid inside to rise,” says PhD student David Keeling who has built a special rig to test the device.

The device is currently at prototype stage with team using a computer simulated model of the human blood flow circuit coupled to David’s mechanical rig. The rig replicates the motion of the heart within the simulation under different conditions, and allows the team to test their web device. The group is currently testing their latest prototype, aiming to refine design and assist strategies. Says David: “We’ve been looking at finding the optimum timing to trigger and also length of the compressive squeeze.”

Once the mechanics have been perfected, the team intends to simulate the effects of different heart diseases to gauge the potential success of the device.

Potential uses for the device are huge. As well as offering support to people suffering from heart and valve problems, the device could also be a bridging aid to patients as they wait for transplants, providing them with a better quality of life. Says David: “Recent research has found that with some heart diseases, supporting the heart for a short period with an assistive device reduces the work-load on the heart and allows it to rest and recover. Our device also allows for a controlled relaxation of the heart muscle after contraction, which means that it’s being supported throughout the whole heartbeat process. It’s the same as when you pull a muscle in any other part of your body, rest can often be the best therapy.”

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>