Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knee brace generates electricity from walking

11.02.2008
A new energy-capturing knee brace can generate enough electricity from walking to operate a portable GPS locator, a cell phone, a motorized prosthetic joint or an implanted neurotransmitter, research involving the University of Michigan shows.

A report on the device is published in the Feb. 8 issue of the journal Science. Authors include researchers from Simon Fraser University in Canada and the University of Pittsburgh, in addition to U-M.

The wearable mechanism works much like regenerative braking charges a battery in some hybrid vehicles, said Arthur Kuo, an associate professor of mechanical engineering at U-M and an author of the paper.

Regenerative brakes collect the kinetic energy that would otherwise be dissipated as heat when a car slows down. This knee brace harvests the energy lost when a human brakes the knee after swinging the leg forward to take a step.

Kuo, who called the device "a cocktail-napkin idea," says knee joints are uniquely suited for this endeavor.

"There is power to be harvested from various places in the body, and you can use that to generate electricity. The knee is probably the best place," he said. "During walking, you dissipate energy in various places, when your foot hits the ground, for example. You have to make up for this by performing work with your muscles.

"The body is clever," Kuo said. "In a lot of places where it could be dissipating energy, it may actually be storing it and getting it back elastically. Your tendons act like springs. In many places, we're not sure whether the energy is really being dissipated or you're just storing it temporarily. We believe that when you're slowing down the knee at the end of swinging the leg, most of that energy normally is just wasted."

The scientists tested the knee brace on six men walking leisurely on a treadmill at 1.5 meters per second, or 2.2 miles per hour. They measured the subjects' respiration to determine how hard they were working. A control group wore the brace with the generator disengaged to measure how the weight of the 3.5-pound brace affected the wearer.

In the mode in which the brace is only activated while the knee is braking, the subjects required less than one watt of extra metabolic power for each watt of electricity they generated. A typical hand-crank generator, for comparison, takes an average of 6.4 watts of metabolic power to generate one watt of electricity because of inefficiencies of muscles and generators.

"We've demonstrated proof of concept," Kuo said. "The prototype device is bulky and heavy, and it does affect the wearer just to carry. But the energy generation part itself has very little effect on the wearer, whether it is turned on or not. We hope to improve the device so that it is easier to carry, and to retain the energy-harvesting capabilities."

A lighter version would be helpful to hikers or soldiers who don't have easy access to electricity. And the scientists say similar mechanisms could be built into prosthetic knees other implantable devices such as pacemakers or neurotransmitters that today require a battery, and periodic surgery to replace that battery.

"A future energy harvester might be implanted along with such a device and generate its own power from walking," Kuo said.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>