Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doctors will soon be able to feel organs via a display screen

08.02.2008
With the aid of computerized image analysis, it may be possible in the future for radiologists to feel images with the help of a three-dimensional mouse. Erik Vidholm at Uppsala University has been involved in developing the new technology, which makes it easier to diagnose and plan the treatment of cancer, for instance.

Computerized image analysis can be used to determine the size of organs like the liver, or to construct three-dimensional models of organs when surgery or radiation is being planned. The quality of these images often varies, however - what’s more we humans can actually look very different from each other inside, which makes it difficult for the computer to find the information that is relevant fully automatically. It’s therefore common to use interactive methods in which doctors themselves mark the areas of interest in the image and then let the computer do the rest of the work based on this information.

Erik Vidholm, at the Center for Image Analysis at Uppsala University, has taken part in the development of such interactive methods where the mouse and keyboard are replaced by a pen-like three-dimensional mouse that enables the user to feel the virtual organs. This is called haptics. Computer models are adapted to the images of organs and can then be used to measure the volume of the organ, for example, or to calculate changes in shape and migrations.

“To get a greater sense of depth in the image we use stereo graphics. When the models are to be adapted to the images, this is done partly automatically on the basis of the content of the image and partly with the input of the user wielding the haptic pen,” he explains.

Erik Vidholm has also developed a method for rapidly visualizing complex image volumes with the aid of modern graphics cards. This technology has been used as a component in the development of a method for more readily discovering breast cancer.

Most of these methods have been assembled in a software package that can be freely downloaded via the Internet so that other researchers in medical image analysis can benefit from them. The package is available at: http://www.cb.uu.se/research/haptics

Anneli Waara | alfa
Further information:
http://publications.uu.se/theses/abstract.xsql?dbid=8409

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>