Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doctors will soon be able to feel organs via a display screen

08.02.2008
With the aid of computerized image analysis, it may be possible in the future for radiologists to feel images with the help of a three-dimensional mouse. Erik Vidholm at Uppsala University has been involved in developing the new technology, which makes it easier to diagnose and plan the treatment of cancer, for instance.

Computerized image analysis can be used to determine the size of organs like the liver, or to construct three-dimensional models of organs when surgery or radiation is being planned. The quality of these images often varies, however - what’s more we humans can actually look very different from each other inside, which makes it difficult for the computer to find the information that is relevant fully automatically. It’s therefore common to use interactive methods in which doctors themselves mark the areas of interest in the image and then let the computer do the rest of the work based on this information.

Erik Vidholm, at the Center for Image Analysis at Uppsala University, has taken part in the development of such interactive methods where the mouse and keyboard are replaced by a pen-like three-dimensional mouse that enables the user to feel the virtual organs. This is called haptics. Computer models are adapted to the images of organs and can then be used to measure the volume of the organ, for example, or to calculate changes in shape and migrations.

“To get a greater sense of depth in the image we use stereo graphics. When the models are to be adapted to the images, this is done partly automatically on the basis of the content of the image and partly with the input of the user wielding the haptic pen,” he explains.

Erik Vidholm has also developed a method for rapidly visualizing complex image volumes with the aid of modern graphics cards. This technology has been used as a component in the development of a method for more readily discovering breast cancer.

Most of these methods have been assembled in a software package that can be freely downloaded via the Internet so that other researchers in medical image analysis can benefit from them. The package is available at: http://www.cb.uu.se/research/haptics

Anneli Waara | alfa
Further information:
http://publications.uu.se/theses/abstract.xsql?dbid=8409

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>