Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device Zeroes in on Small Breast Tumors

31.01.2008
A new medical imager for detecting and guiding the biopsy of suspicious breast cancer lesions is capable of spotting tumors that are half the size of the smallest ones detected by standard imaging systems, according to a new study.

The results of initial testing of the PEM/PET system, designed and constructed by scientists at the Department of Energy's Thomas Jefferson National Accelerator Facility, West Virginia University School of Medicine and the University of Maryland School of Medicine will be published in the journal Physics in Medicine and Biology on Feb. 7.

"This is the most-important and most-difficult imager we've developed so far," Stan Majewski, Jefferson Lab Radiation Detector and Medical Imaging Group leader said. "It is another example of nuclear physics detector technology that we have put a lot of time and effort into adapting for the common good."

Testing of the new imager was led by Ray Raylman, a professor of radiology and vice chair of Radiology Research at WVU and lead author on the study. Raylman's team imaged various radioactive sources to test the resolution of the system.

"We had good performance characteristics, with image resolution below two millimeters. In regular PET, the image resolution is over five millimeters, so we're quite a bit better than that," Raylman said. In addition, the initial tests revealed that the PEM/PET system can complete an image and biopsy in about the same amount of time as a traditional biopsy.

"The ability of the device to do biopsy is probably one of its most unique characteristics. There are other breast imagers, but none that are built specifically to do biopsy as well as imaging," Raylman said.

The system features components designed for imaging the unique contours of the breast. Known as positron emission mammography (PEM), this imaging capability enables users to attain high-resolution, three-dimensional PET images of the breast. The PEM/PET system images the breast with a movable array of two pairs of two flat detection heads.

If a suspected lesion is found, a single pair of heads is then used to guide a needle biopsy of the lesion; the biopsy is performed with a person-controlled robot arm. Raylman is the author of the concept and has a patent on this idea. The system is especially useful in imaging tumors in women who have indeterminate mammograms because of dense or fibroglandular breasts.

The Jefferson Lab Radiation Detector and Medical Imaging Group, with a group member now affiliated with the University of Maryland School of Medicine, developed the detector heads with the on-board electronics, the data acquisition readout and the image reconstruction software. The imaging device's gantry and the motion-control software was developed by West Virginia University researchers.

The next steps for the team include minor improvements in the detector systems and image reconstruction software and the addition of components for taking x-ray computed tomography (CT) scans. Initial clinical trials are planned after completion of system testing.

Contact: Kandice Carter 757-269-7263 or
Dean Golembeski, 757-269-7689

Kandice Carter | EurekAlert!
Further information:
http://www.jlab.org

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>