Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technology sharpens X-ray vision

Researchers at the Paul Scherrer Institute (PSI) and the EPFL in Switzerland have developed a novel method for producing dark-field x-ray images at wavelengths used in typical medical and industrial imaging equipment.

Dark-field images provide more detail than ordinary x-ray radiographs and could be used to diagnose the onset of osteoporosis, breast cancer or Alzheimer’s disease, to identify explosives in hand luggage, or to pinpoint hairline cracks or corrosion in functional structures.

Up until this point, dark-field x-ray imaging required sophisticated optics and could only be produced at facilities like the PSI’s 300m-diameter, $200 million synchrotron. With the new nanostructured gratings described in this research, published online January 20 in Nature Materials, dark-field images could soon be produced using ordinary x-ray equipment already in place in hospitals and airports around the world.

Unlike traditional x-ray images, which show a simple absorption contrast, dark-field images capture the scattering of the radiation within the material itself, exposing subtle inner changes in bone, soft tissue, or alloys. The overall clarity of the images is striking. The improved sensitivity in measuring bone density and hairline fractures could help diagnose the onset of osteoporosis. Because cancer or plaque cells scatter radiation slightly differently than normal cells, dark-field x-ray images can also be used to explore soft tissue, providing safer early diagnosis of breast cancer or the plaques associated with Alzheimer’s disease.

Security screening equipment equipped with dark-field image capability could better identify explosives, whose micro-crystalline structures strongly scatter x-ray radiation. And because x-rays penetrate a material without damaging it, dark-field images could help reveal scattering-producing micro-cracks and corrosion in structures such as airplane wings or the hulls of boats.

“Researchers have been working on dark-field x-ray images for many years,” explains Franz Pfeiffer, a professor at EPFL and researcher at the PSI. “Up until now these images have only been possible using sophisticated crystal optical elements.” Crystal optics, however, only work for a single x-ray wavelength and thus are highly inefficient. “Our new technique uses novel x-ray optical components, in the form of nanostructured gratings, that permit the use of a broad energy spectrum, including the standard range of energies in traditional x-ray equipment used in hospitals or airports,” adds Christian David, Pfeiffer’s colleague at PSI. “This opens up the possibility for adapting current imaging equipment to include dark-field imaging.”

Pfeiffer plans to collaborate with the Center for Biomedical Imaging (CIBM), a joint center with the Universities of Lausanne and Geneva and their associated hospitals, to develop an adaptation for existing medical equipment. “When combined with the phase contrast imaging technique that we developed in 2006, we now have the possibility of providing the same range of imaging techniques in broad-spectrum x-ray imaging that we do with visible light.”

Mary Parlange | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>