Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real-time MRI analysis powered by supercomputers

17.02.2017

Researchers develop a pipeline to power fast, accurate image processing for precision medicine

One of the main tools doctors use to detect diseases and injuries in cases ranging from multiple sclerosis to broken bones is magnetic resonance imaging (MRI). However, the results of an MRI scan take hours or days to interpret and analyze. This means that if a more detailed investigation is needed, or there is a problem with the scan, the patient needs to return for a follow-up.


Raw image data collected from dGEMRIC MRI protocol at an inversion time of 1600 milliseconds (left). The T1 map computed from seven different inversion times using the automated, real-time, quantitative magnetic resonance imaging pipeline (right).

Credit: TACC, UTHRC, Philips Healthcare

A new, supercomputing-powered, real-time analysis system may change that.

Researchers from the Texas Advanced Computing Center (TACC), The University of Texas Health Science Center (UTHSC) and Philips Healthcare, have developed a new, automated platform capable of returning in-depth analyses of MRI scans in minutes, thereby minimizing patient callbacks, saving millions of dollars annually, and advancing precision medicine.

The team presented a proof-of-concept demonstration of the platform at the International Conference on Biomedical and Health Informatics this week in Orlando, Florida.

The platform they developed combines the imaging capabilities of the Philips MRI scanner with the processing power of the Stampede supercomputer -- one of the fastest in the world -- using the TACC-developed Agave API Platform infrastructure to facilitate communication, data transfer, and job control between the two.

An API, or Application Program Interface, is a set of protocols and tools that specify how software components should interact. Agave manages the execution of the computing jobs and handles the flow of data from site to site. It has been used for a range of problems, from plant genomics to molecular simulations, and allows researchers to access cyberinfrastructure resources like Stampede via the web.

"The Agave Platform brings the power of high-performance computing into the clinic," said William (Joe) Allen, a life science researcher for TACC and lead author on the paper. "This gives radiologists and other clinical staff the means to provide real-time quality control, precision medicine, and overall better care to the patient."

For their demonstration project, staff at UTHSC performed MRI scans on a patient with a cartilage disorder to assess the state of the disease. Data from the MRI was passed through a proxy server to Stampede where it ran the GRAPE (GRAphical Pipelines Environment) analysis tool. Created by researchers at UTHSC, GRAPE characterizes the scanned tissue and returns pertinent information that can be used to do adaptive scanning - essentially telling a clinician to look more closely at a region of interest, thus accelerating the discovery of pathologies.

The researchers demonstrated the system's effectiveness using a T1 mapping process, which converts raw data to useful imagery. The transformation involves computationally-intensive data analyses and is therefore a reasonable demonstration of a typical workflow for real-time, quantitative MRI.

A full circuit, from MRI scan to supercomputer and back, took approximately five minutes to complete and was accomplished without any additional inputs or interventions. The system is designed to alert the scanner operator to redo a corrupted scan if the patient moves, or initiate additional scans as needed, while adding only minimal time to the overall scanning process.

"We are very excited by this fruitful collaboration with TACC," said Refaat Gabr, an assistant professor of Diagnostic and Interventional Imaging at UTHSC and the lead researcher on the project. "By integrating the computational power of TACC, we plan to build a completely adaptive scan environment to study multiple sclerosis and other diseases."

Ponnada Narayana, Gabr's co-principal investigator and the director of Magnetic Resonance Research at The University of Texas Medical School at Houston, elaborated.

"Another potential of this technology is the extraction of quantitative, information-based texture analysis of MRI," he said. "There are a few thousand textures that can be quantified on MRI. These textures can be combined using appropriate mathematical models for radiomics. Combining radiomics with genetic profiles, referred to as radiogenomics, has the potential to predict outcomes in a number diseases, including cancer, and is a cornerstone of precision medicine."

According to Allen, "science as a service" platforms like Agave will enable doctors to capture many kinds of biomedical data in real time and turn them into actionable insights.

"Here, we demonstrated this is possible for MRI. But this same idea could be extended to virtually any medical device that gathers patient data," he said. "In a world of big health data and an almost limitless capacity to compute, there is little reason not to leverage high-performance computing resources in the clinic."

###

The research is supported in part by National Science Foundation (NSF) award ACI-1450459, by the Clinical Translational Science Award (CTSA) Grant UL1-TR000371 from the National Institutes of Health (NIH) National Center for Advancing Translational Sciences, and by the Chair in Biomedical Engineering Endowment Fund. Stampede was generously funded by the NSF through award ACI-1134872.

Media Contact

Aaron Dubrow
aarondubrow@tacc.utexas.edu
512-471-8217

 @TACC

http://www.tacc.utexas.edu/ 

Aaron Dubrow | EurekAlert!

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>