Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real-time MR Images of the Beating Heart

08.10.2015

The Fraunhofer-Gesellschaft and Max-Planck-Gesellschaft joined for a successful project on fast and easy examination of heart patients.

Today, magnetic resonance imaging allows more gentle, precise, and cost-effective heart disease diagnosis. However, the method has limitations when examining children and patients with cardiac arrhythmia. A joint project of the Fraunhofer Institute for Medical Image Computing MEVIS and the Max Planck Institute for Biophysical Chemistry promises a solution for these limitations. Experts were able to accelerate the image acquisition process and expand the method’s applicability.


The software developed by Fraunhofer MEVIS automatically identifies the breathing and heart contraction phases in the data independent of the ECG information. This allows for a fast and easy examination of heart patients.

The importance of magnetic resonance imaging (MRI) for diagnosing cardiovascular diseases is steadily growing. The method does not expose patients to X-rays, and, unlike a heart catheter, is non-invasive. Furthermore, MRI delivers information that no other imaging method can. Doing so, it can help evaluate the condition of myocardial tissue. Because of these advantages, more and more heart images are acquired with MRI – the German Cardiac Society also recommends increasing the use of MR imaging for heart diagnostics.

Until now, the use of this method has come with limitations: The image acquisition process is not fast enough to monitor heart movements caused by breathing and heartbeat directly. To counteract movement from breathing, patients have to hold their breath during the examination. At the same time, they are connected to an ECG that records the heartbeat. This has been the only way to match the separate images to the appropriate heartbeat phase during subsequent image reconstruction.

These limitations cause problems for particular patient groups. Small children who cannot control their breathing have to be sedated for the procedure, and for those with cardiac arrhythmia, the ECG cannot deliver reliable data for image reconstruction.

The CaFuR (Cardiac Function in Real Time) project, a recently completed joint venture of the Fraunhofer-Gesellschaft and the Max Planck Society, provides a remedy for these problems. The Biomedizinische NMR Forschungs GmbH at the Max Planck Institute for Biophysical Chemistry in Göttingen and the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen both participated in the project. Experts in Göttingen, working under Professor Jens Frahm, developed a method for real-time MR imaging. “Images with extremely shortened measurement time enable acquisition of films of the beating heart with 30 to 50 images per second, free breathing, and no use of ECG. This method allows physicians to observe the heart muscle or blood flow reactions under physical strain directly,” explains Prof. Frahm.

Fraunhofer MEVIS developed the required image analysis methods, including an algorithm that automatically identifies the breathing and heart contraction phases in the data independent of the ECG information. “One challenge we had to overcome was the substantial amount of data,” says Dr.-Ing. Anja Hennemuth, project manager at MEVIS. “Up to 8 gigabytes of image data can be acquired during an examination, which is impossible for doctors to manually analyze.”

A further problem, caused by accelerated image acquisition, is decreased contrast compared to traditional MRI. The brightness of blood and tissue can vary, impeding reliable differentiation. “Classical methods are of no help in this aspect,” stresses Hennemuth. “We had to develop new, self-learning algorithms that can reliably recognize the heart muscle even with varying contrasts.”

The method has proven itself in first trials. Pediatric cardiologists already use it in their research. Thanks to the new method, children can now lie awake in the MR scanner and pedal a stationary recumbent bicycle, enabling heart examination under a defined strain. Omitting the use of ECG reduces image acquisition time by up to 50 percent, providing a more comfortable patient experience and saving insurance costs. Furthermore, the method allows gathering novel diagnostic information and precise characterization of individual heart function for patients with cardiac arrhythmia.

Clinical testing at the University Clinic in Göttingen has already started and will soon commence in other centers. “There is no need for new hardware, only a software extension for existing MRI devices,” says Hennemuth. “We hope that the method will be ready for use next year.”

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/bilder-vom-schlagen...

Dr. Guido Prause | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>