Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Detection of Malaria

21.11.2012
The Department of Microsystems Engineering of the University of Freiburg is Coordinating the Research Project DiscoGnosis

An estimated 220 million people become infected with malaria each year. The disease is often lethal – particularly in tropical developing countries with insufficient health care services.


source: IMTEK/Bernd Müller

The infected suffer from a high fever. As this is also the case with other germs, however, it is important to conduct a rapid and precise analysis to determine the cause of the disease for a successful therapy. A team of researchers aims to develop a rapid test of this kind within the context of the project DiscoGnosis.

Launched in November 2012, the project will receive three million euros in funding from the European Union and is being coordinated by the Department of Microsystems Engineering (IMTEK) of the University of Freiburg.

DiscoGnosis stands for “disc-shaped point-of-care platform for infectious disease diagnosis” – a device that looks similar to a DVD player. Its purpose will be to purify patients’ blood samples and detect all relevant fever-causing germs in a single step. The institutions responsible for the project want to develop an inexpensive method for determining whether a person with fever has malaria or not. Studies have shown that 30 to 40 percent of patients being treated for malaria are actually suffering from typhus or dengue fever.

Each disc will be intended for one use only and will be capable of making a reliable diagnosis automatically with the help of integrated biochemical analytical processes. The innovation thus has the potential to bring modern diagnostics to countries and regions with poor infrastructure and improve the health care of entire populations. Ultimately, it could serve as a shield to stop the spread of malaria in Europe, which is currently being exacerbated by climate change.

IMTEK’s partners in the consortium are the University Medical Center Göttingen, the University Hospital Basel, Switzerland, the Swiss tool technology and engineering company Rohrer AG, the biotechnology companies MagnaMedics Diagnostics BV from the Netherlands and MAST Group Ltd. from Great Britain, and the European Foundation for Clinical Nanomedicine.

Further Information:
www.pr.uni-freiburg.de/go/discognosis
Contact:
Dr. Konstantinos Mitsakakis
Project Coordinator
Department of Microsystems Engineering, Laboratory for MEMS Applications
University of Freiburg
Phone: +49 (0)761/203-73252
E-Mail: konstantinos.mitsakakis@imtek.uni-freiburg.de
Katrin Grötzinger
PR & Marketing
Department of Microsystems Engineering
University of Freiburg
Phone: +49 (0)761/203-73242
E-Mail: katrin.groetzinger@imtek.uni-freiburg.de

Melanie Hübner | University of Freiburg
Further information:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/go/discognosis

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>