Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio-guided surgery a safe and simple way to remove potentially cancerous nodules in the lung

28.02.2011
European Multidisciplinary Conference in Thoracic Oncology news

Using tiny spheres of radioactive liquid to guide surgeons as they remove potentially cancerous material in the lungs is safe and more effective than other techniques, Italian researchers report at the European Multidisciplinary Conference in Thoracic Oncology (EMCTO), 24-26 February 2011, Lugano, Switzerland.

Dr Luca Bertolaccini, Dr Alberto Terzi and colleagues from Santa Croce e Carle Hospital in Cuneo, Italy, studied a technique known as radio-guided surgery in 19 patients. Each of the patients had been found to have 'single pulmonary nodules' in their lungs.

Single pulmonary nodules are solitary abnormalities in the lungs that are smaller than 3 cm in diameter. Improvements in scanning techniques such as computed tomography mean that these very small nodules are becoming more commonly found.

If such nodules are found to be malignant, then surgical treatment to remove them should be undertaken immediately, Dr Bertolaccini said. "The problem is that such lesions are usually peripheral, making bronchoscopic approaches to diagnosis unsuccessful, while the accuracy of CT-guided biopsy is hindered by the small diameter and by the patient's respiratory movements during the exam."

"Video-assisted thoracoscopic surgery (VATS) is nowadays the procedure of choice if we want to surgically biopsy and remove peripheral lung nodules. However, the use of VATS is limited by the difficulty in localizing small, deep, or non-solid lung nodules where direct finger palpation may not be possible during surgery."

Using radio-guided surgery appears to overcome these problems, the researchers found. First they inserted a needle into the lung to reach the lesion or the lung tissue surrounding it. A CT scan carried out while the needle was in place confirmed its exact position.

Next, they injected a solution of 0.3 ml of microspheres of human albumin serum labeled with Technetiumm (99mTc), an element that is often used for medical tests. After injection, they used another CT scan and a technique called gamma scintigraphy --which visualizes the gamma radiation being emitted by the radioactive isotope-- to confirm precise staining of the nodule.

During surgery to remove the nodule, the researchers used a gamma detector probe to ensure they had removed all the radio-labeled tissue.

The researchers found that the technique was able to localize nodules in all 19 patients. On average it took 6 minutes to detect the nodule with the gamma probe.

Further analysis of the tissue that had been removed showed that it was a primary lung cancer in 8 cases, and a secondary lesion in 4 cases. The remaining 7 patients were found to have benign nodules. There were no complications during or after surgery.

This study shows that radio-guided surgery is a safe and simple technique for localizing single pulmonary nodules, Dr Terzi said. "Radio-guided thoracoscopy seems to be an effective procedure with fewer complications and failures than other techniques."

Commenting on the study, Dr Eric Lim, Consultant Thoracic Surgeon, Royal Brompton Hospital and Senior Lecturer, National Heart and Lung Institute, Imperial College, London, who was not involved in the study, said: "Dr Bertolaccini reports an innovative method to localize nodules that can be difficult for the surgeon to identify during routine surgery."

"This technology supports the current practice of video-assisted thoracoscopic lung resection as surgeons continuously strive to reduce incision size, pain and length of stay to increase the acceptability of surgery for lung cancer," said Dr Lim.

Vanessa Pavinato | EurekAlert!
Further information:
http://www.esmo.org

More articles from Medical Engineering:

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

nachricht Why we need erasable MRI scans
26.04.2018 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>