Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation therapy improves painful condition associated with multiple sclerosis

26.10.2010
Stereotactic radiation is an effective, long-term treatment for trigeminal neuralgia: a painful condition that occurs with increased frequency in patients with multiple sclerosis (MS). Radiation is noninvasive and has less negative side effects than other treatments, according to the longest follow-up in a study of its kind presented October 31, 2010, at the 52nd Annual Meeting of the American Society for Radiation Oncology (ASTRO).

Multiple sclerosis is a progressive neurological disease affecting about 300,000 Americans where the body's immune system attacks its own nerve cells, affecting the ability of the brain to communicate with the spinal cord.

Trigeminal neuralgia is an intensely painful condition caused by dysfunction of the trigeminal nerve, which is one of the nerves that innervates the face. People living with MS see a significantly increased incidence of this problem.

"We studied patients for a median of five years after treatment, which is the longest period of follow-up ever completed," Tejan Diwanji, lead author of the study at the University of Maryland, School of Medicine in Baltimore, said "Our study shows that radiosurgery using Gamma Knife is a proven alternative to surgery or anti-epileptic drugs."

The study was designed to determine the long-term effectiveness of treating trigeminal neuralgia in MS patients with Gamma Knife radiosurgery.

Stereotactic radiation is a specialized type of external beam radiation therapy that uses focused radiation beams to target a well-defined area. It is most often used for tumors of the brain, but in this case, doctors targeted a nerve root, relying on detailed imaging and computerized three-dimensional planning to deliver the radiation dose with extreme accuracy while sparing the surrounding tissue to reduce side effects.

Stereotactic radiation therapy, sometimes called radiosurgery, refers to a single or several treatments to the brain. Doctors in this study used GammaKnife. Other brand names for stereotactic radiation include Axesse, CyberKnife, Novalis, Primatom, Synergy, X-Knife, TomoTherapy or Trilogy.

The study involved 13 MS patients with trigeminal neuralgia who were treated with radiosurgery at the University of Maryland between 1998 and 2001 and were followed for a median of five years after treatment.

"We need more long-term studies to confirm the positive and lasting outcomes of radiosurgery, then it could become the treatment of choice for MS patients afflicted with trigeminal neuralgia," Diwanji, said. "I encourage people with MS suffering from trigeminal neuralgia to talk to their doctor about consulting a radiation oncologist to see if they would be good candidates for radiosurgery."

For more information on radiation therapy, visit www.rtanswers.org.

The abstract, "Long-term Outcome of Gamma Knife Stereotactic Radiosurgery for Multiple Sclerosis Associated Trigeminal Neuralgia," will be presented at 10:00 a.m. on Sunday, October 31, 2010. To speak to the lead author of the study, Tejan Diwanji, please call Beth Bukata or Nicole Napoli on October 31 - November 2, 2010, in the ASTRO Press Room at the San Diego Convention Center at 619-525-6313 or 619-525-6314. You may also e-mail them at bethb@astro.org or nicolen@astro.org.

Beth Bukata | EurekAlert!
Further information:
http://www.astro.org

Further reports about: Astro Gamma knife Radiation Stereotactic ion beam nerve cell radiation therapy

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>