Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick test finds signs of sepsis in a single drop of blood

03.07.2017

A new portable device can quickly find markers of deadly, unpredictable sepsis infection from a single drop of blood.

A team of researchers from the University of Illinois and Carle Foundation Hospital in Urbana, Illinois, completed a clinical study of the device, which is the first to provide rapid, point-of-care measurement of the immune system's response, without any need to process the blood.


University of Illinois researchers and physicians at Carle Foundation Hospital developed a rapid test for sepsis that counts white blood cells and protein markers on their surface to monitor a patient's immune response.

Image by Janet Sinn-Hanlon

This can help doctors identify sepsis at its onset, monitor infected patients and could even point to a prognosis, said research team leader Rashid Bashir, a professor of bioengineering at the U. of I. and the interim vice dean of the Carle Illinois College of Medicine. The researchers published their findings in the journal Nature Communications.

Sepsis is triggered by an infection in the body. The body's immune system releases chemicals that fight the infection, but also cause widespread inflammation that can rapidly lead to organ failure and death.

Sepsis strikes roughly 20 percent of patients admitted to hospital intensive care units, yet it is difficult to predict the inflammatory response in time to prevent organ failure, said Dr. Karen White, an intensive care physician at Carle Foundation Hospital. White led the clinical side of the study.

"Sepsis is one of the most serious, life-threatening problems in the ICU. It can become deadly quickly, so a bedside test that can monitor patient's inflammatory status in real time would help us treat it sooner with better accuracy," White said.

Sepsis is routinely detected by monitoring patients' vital signs - blood pressure, oxygen levels, temperature and others. If a patient shows signs of being septic, the doctors try to identify the source of the infection with blood cultures and other tests that can take days - time the patient may not have.

The new device takes a different approach.

"We are looking at the immune response, rather than focusing on identifying the source of the infection," Bashir said. "One person's immune system might respond differently from somebody else's to the same infection. In some cases, the immune system will respond before the infection is detectable. This test can complement bacterial detection and identification. We think we need both approaches: detect the pathogen, but also monitor the immune response."

The small, lab-on-a-chip device counts white blood cells in total as well as specific white blood cells called neutrophils, and measures a protein marker called CD64 on the surface of neutrophils. The levels of CD64 surge as the patient's immune response increases.

The researchers tested the device with blood samples from Carle patients in the ICU and emergency room. When a physician suspected infection and ordered a blood test, a small drop of the blood drawn was given to the researchers, stripped of identifying information to preserve patient confidentiality. The team was able to monitor CD64 levels over time, correlating them with the patient's vital signs. Researchers found that the results from the rapid test correlated well with the results from the traditional tests and with the patients' vital signs.

"By measuring the CD64 and the white cell counts, we were able to correlate the diagnosis and progress of the patient - whether they were improving or not," said Umer Hassan, a postdoctoral researcher at Illinois and the first author of the study. "We hope that this technology will be able to not only diagnose the patient but also provide a prognosis. We have more work to do on that."

Bashir's team is working to incorporate measurements for other inflammation markers into the rapid-testing device to give a more complete picture of the body's response, and to enable earlier detection. They also have a startup company, Prenosis Inc., that is working to commercialize the device.

"We want to move the diagnosis point backward in time," Bashir said. "The big challenge in sepsis is that no one knows when you get infected. Usually you go to the hospital when you already feel sick. So the goal is that someday you can be testing this at home, to detect infection even earlier if you can."

###

The Center for Integration of Medicine and Innovative Technology Innovation in Boston supported this work through a Point-of-Care Technology Research Center in Primary Care grant. Additional support came from Carle Foundation Hospital and the University of Illinois.

Editor's notes: To reach Rashid Bashir, call 217-333-1867; email rbashir@illinois.edu.

The paper "A Point-of-Care Microfluidic Biochip for Quantification of CD64 Expression from Whole Blood for Sepsis Stratification" is available from the U. of I. News Bureau. DOI: 10.1038/NCOMMS15949

Media Contact

Liz Ahlberg Touchstone
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg Touchstone | EurekAlert!

More articles from Medical Engineering:

nachricht UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy
22.11.2017 | University of California - Los Angeles

nachricht First transcatheter implant for diastolic heart failure successful
16.11.2017 | The Ohio State University Wexner Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>