Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PTB unites magnetic resonance and radar technology in one prototype

10.09.2008
New process is to improve diagnostic images

Don't move a muscle! Patients certainly have to take this request to heart if they have to lie in a magnetic resonance tomography (MRT) device – otherwise movement artefacts result on the images produced by the MRT.

These are distorting elements in the image which show the movement of the body, but not the body itself. Movement is a disturbing factor which leads to blurring and "ghosting" in the MRT image. Patients, however, have to have not only a lot of patience but also endurance, as a magnetic resonance imaging (MRI) test can take up to 30 minutes. But even if the patient does not move once during the whole time, movement artefacts cannot be ruled out.

Some parts of the body are always moving – for example the lungs expand when you breathe in and the chest goes up and down. The movement of the heart muscle also leads to distortions in the image – as it changes shape during the pumping cycle. With the aid of an ultra-broadband radar device, these vital movements during measurement can be taken into consideration and the MRI measurements can be corrected.

The joint use of both technologies is being tested with the aid of a prototype developed at the Physikalisch Technische Bundesanstalt (PTB, Germany's national metrology institute), which arose in co-operation with Ilmenau University of Technology. This project is funded by the Deutsche Forschungsgemeinschaft (DFG, the German Research Foundation) in the frame of a priority programme running for six years.

The interdisciplinary research project ultraMEDIS within the DFG priority programme 1202 "Ultra wide-band radio technologies for communication, localisation and sensor technology" is aimed at using ultra-wideband (UWB) radar techniques for the detection of tumours, as well as for navigation technology in magnetic resonance (MR) imaging.

Ultra-wideband electromagnetic pulses (spectral bandwidth up to 10 GHz) generated by an UWB radar and transmitted by an antenna are able to probe the human body with low integral power (~ 1 mW), because electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. The receiving antenna detects the reflected signals coming from different depths of the body.

The high temporal and spatial resolution of radar sensors, their compatibility to existing narrow-band systems, the low integral power of the probing signals and their ability to penetrate objects are thereby exploited. Especially the latter one is the very property which makes UWB radar so attractive for medical applications.

At PTB, a demonstrator for the evaluation of the principal feasibility of an MR-UWB combination has been realised [1, 2]. With an MR-compatible UWB radar, the characteristic landmarks of the heart muscle during breathing could be followed without disturbing the actual MR measurement. Thus both, a real-time adjustment of the MR frequency according to the current position of the heart or a retrospective position correction of the MR data could be carried out.

The Project is carried out in cooperation with the Technical University of Ilmenau and with medical partners from University of Jena, whose special attention lies on tumor detection.

Imke Frischmuth | alfa
Further information:
http://www.ptb.de/
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080909.html

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>