Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proper placement of defibrillators key to effective use

29.07.2009
Study highlights:

Placing automated external defibrillators (AEDs) in schools can save the lives of student-athletes and non-students who suffer sudden cardiac arrest on school grounds, according to a new study by Seattle researchers.

However, schools need a response plan along with the lifesaving equipment.

In a separate Danish study, researchers found that almost 70 percent of all out-of-hospital cardiac arrests in public places could be covered by strategic placement of AEDs within a limited area of a city center and with acceptable costs.

The appropriate placement of automated external defibrillators (AEDs) is critical to optimize their use in public places, according to two studies published in Circulation: Journal of the American Heart Association.

Sudden cardiac arrest is the sudden, abrupt loss of heart function. Without immediate bystander cardiopulmonary resuscitation (CPR), brain death and permanent death start to occur in just four to six minutes after someone experiences cardiac arrest. Cardiac arrest can be reversed by immediate bystander CPR and treatment within a few minutes with an electric shock to allow the heart to restore a normal heartbeat. More than 92 percent of out-of-hospital cardiac arrest victims don’t survive to hospital discharge. In cities where bystander CPR and defibrillation is provided within 5 to 7 minutes, the survival rate from out-of-hospital sudden cardiac arrest is as high as 30 percent to 45 percent, according to the American Heart Association.

In one study, researchers found that school-based AED programs have a high rate of survival for students and others on school grounds.

Researchers found that 83 percent of 1,710 U.S. high schools with AED programs that they studied had an established emergency response plan for sudden cardiac arrest. However, only 40 percent practiced and reviewed their plans at least annually with potential school responders.

Of 36 cases of sudden cardiac arrests at the 1,710 schools:

94 percent received bystander CPR,
83 percent received an AED shock and
64 percent survived to hospital discharge including 9 of 14 student athletes and 14 of 22 non students.

Three factors — prompt recognition of sudden cardiac arrest, the presence of a trained rescuer to initiate CPR and access to early defibrillation through on-site AEDs — are critical to improving survival from sudden cardiac arrest in schools, said Jonathan A. Drezner, M.D., lead author of the study and associate professor and team physician in the Department of Family Medicine at the University of Washington-Seattle.

“It is not just about the AEDs — schools must have a comprehensive emergency response plan for sudden cardiac arrest that includes training anticipated responders in CPR and AED use, access to an AED, and practice and review of the response plan,” Drezner said.

“It is crucial to recognize that AEDs permit early defibrillation not only in young athletes but also in other individuals who may experience an unexpected sudden cardiac arrest. We found that more than half of sudden cardiac arrest events reported in schools occur in adults working at the school or attending a school event. Schools are a strategic location for AED programs to serve large concentrations of people at risk for sudden cardiac arrest.”

In a Danish study, researchers examined strategic placement of AEDs in public urban locations. A significant amount of interest and money is focused on AED deployment and public access defibrillation programs worldwide, but knowledge about where and how widespread AED deployment in the community should be is lacking, said Fredrik Folke, M.D., lead author of the study and a cardiology research fellow at Gentofte University Hospital, Hellerup, in Denmark.

To evaluate whether public AEDs were located where the majority of cardiac arrests occurred, Folke and colleagues digitally marked the exact locations of all arrests on a map and then analyzed the locations of 104 AEDs placed in municipal institutions in Copenhagen, Denmark, from 1994 through 2005. About 25 percent of out-of-hospital cardiac arrests occurred in public places.

According to the cardiac arrest analysis, carefully choosing AED coverage in 10 percent of the city area would provide coverage for about 67 percent of all cardiac arrests occurring in public. The highest rates of cardiac arrest in cities were in high-density public areas such as major train stations, large shopping centers, central bus terminals and sports centers.

“Our findings suggest that public access defibrillation programs should cover the greatest possible number of arrests in public, which is consistent with the recommendations from the American Heart Association,” Folke said. “But if AED deployment in the community is driven by local or political initiatives and not on strategic AED placement, there is a high risk of AEDs being placed primarily in low-incidence areas of cardiac arrest and hence low likelihood of the AEDs ever being used.”

Placing AEDs in about 10 percent of the city area cost an estimated $41,000 per extra year of a survivor’s life — deemed “acceptable” by the researchers. However, unguided AED placement trying to cover the entire city had an estimated cost of $108,700 per extra life year.

In an accompanying editorial, Dianne L. Atkins, M.D., a pediatric cardiologist at the University of Iowa, wrote that the two “informative” studies demonstrate that the mere presence of an AED in the general area of an arrest does not guarantee success. Successful AED programs require immediate bystander CPR and non-equipment components in addition to AED-availability, she said.

“The need for ongoing CPR training, fully-developed and executed emergency plans and links to EMS are vital to the immediate and long-term outcomes of shock delivery,” Atkins wrote.

Co-authors, funding sources and author disclosures can be found on the respective manuscripts.

Statements and conclusions of study authors that are published in American Heart Association scientific journals are solely those of the study authors and do not necessarily reflect the association’s policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at www.americanheart.org/corporatefunding.

Kate Lino | EurekAlert!
Further information:
http://www.americanheart.org/corporatefunding
http://www.heart.org

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>