Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision-Guided Epidurals and Better Blood Monitors

28.05.2014

New Applications for OCT Could Improve Care for Women in Labor and People with Diabetic Retinopathy and Glaucoma

The march of modern medicine is often driven by revolutions in medical imaging. When technology advances, doctors are better able to peer deeply into human tissues, and thus able to detect, diagnose and treat human diseases more effectively.
 
Now, researchers have taken an established imaging technology called “optical coherence tomography,” or OCT, and integrated it with other instruments to bring about the next revolution in imaging by helping doctors provide safer, less painful and more effective care for women in labor and people with diabetic retinopathy and glaucoma. Their research will be presented at CLEO: 2014 being held June 8-13 in San Jose, California, USA.
 
OCT uses scattered “echoes” or reflections of light waves to produce high-resolution images of biological tissues, similar to ultrasound imaging but with one order of magnitude improvement in the resolution. Ophthalmologists have been using OCT to examine the retina for years.


Results of OCT-guided insertion. A)The porcine spine used for experiment. B) Anatomy of lumbar spine (sagittal view). C) Images acquired by GRIN needle device corresponding to different tissues. Credit: Qinggong Tang

More recently, OCT has been applied to a number of other clinical specialties, including oncology for early cancer detection and staging in the gastrointestinal and urogenital tract as well as in cardiology, where it is used to study the formation of plaques in coronary arteries in situ.
 
Precision-guided epidurals  

Bioengineer Yu Chen of the University of Maryland and his colleagues have developed a way to integrate an OCT device with an 18-gauge epidural needle. Epidural administration, Chen notes, is traditionally done blindly, using anatomical landmarks. But the team’s newly miniaturized handheld device lets anesthesiologists see tissue from the perspective of the tip of the epidural needle, which could help doctors to deliver spinal anesthetic to patients with less pain and fewer complications.
 
“Due to lack of visual feedback, failure rates are often high, leading to multiple needle insertions,” he says. Side effects of these failures can include trauma to blood vessels and punctures in the dura, the outermost membrane surrounding the brain and spinal cord.
 
“An OCT forward-imaging probe can provide anesthesiologists with real-time visualization of the microarchitecture of tissues and important landmarks, and thus could significantly improve the accuracy and the safety of the needle-based procedure,” Chen says.
 
The researchers have been successful in testing needle-guidance experiments on pig swine samples and hope to conduct a pre-clinical study of the device within the next year.
 
Presentation AM2O.3, titled “Real-time Epidural Anesthesia Guidance Using Optical Coherence Tomography Needle Probe will take place Monday, June 9, at 11:15 a.m. in Salon V & VI of the San Jose Convention Marriott.
 
Better blood monitors  

A team at the University of California, Davis, led by Biomedical Engineer Vivek Srinivasan has shown how OCT can simultaneously measure blood flow and blood oxygenation in vessels, without the need for contrast agents.
 
Like ultrasound, OCT can provide structural information, but it can also be used to determine flow rates and for angiography, visualizing the interior of blood vessels, says Shau Poh Chong, a postdoctoral researcher in the Srinivasan lab.
 
“Conventional pulse oximetry measures oxygen saturation using transmitted light,” Chong says. “Performing these measurements quantitatively with reflected light has traditionally been difficult due to the unknown distance traveled by the light through scattering tissue.”
 
OCT directly determines the distance that light travels. Until now, however, it was difficult to use OCT to measure oxygen saturation in blood, due to additional modeling errors introduced by light scattering.  At visible wavelengths, scattering is much lower relative to blood absorption than at infrared wavelengths, where OCT is typically performed.  The OCT system developed in the Srinivasan lab uses broadband visible light to measure the amounts of both oxygenated and deoxygenated hemoglobin, the oxygen-carrying protein of blood, thus revealing oxygen saturation levels.  In addition, the team developed new methods to further reduce modeling errors caused by light scattering.
 
“The broad set of measurements provided by the system, including angiography, oximetry and red blood cell flow rates enables the direct assessment of tissue oxygen metabolism, which is essential for understanding the evolution of oxygen supply and demand in numerous disease models,” Chong says. “In the future, these techniques could be applied to study metabolic changes in diseases that affect the human retina, such as diabetic retinopathy and glaucoma.”
 
Presentation ATh1O.2, titled “Optical Coherence Imaging of Microvascular Oxygenation and Hemodynamics will take place Thursday, June 12, at 8:30 a.m. in Willow Glen I - III of the San Jose Convention Marriott.
 
PRESS REGISTRATION: A press room for credentialed press and analysts will be located in the San Jose Convention Center, Sunday through Thursday, June 8-12. Those interested in obtaining a press badge for CLEO: 2014 should contact Lyndsay Meyer at 202.416.1435 or lmeyer@osa.org.
 
About CLEO
With a distinguished history as the industry's leading event on laser science, the Conference on Lasers and Electro-Optics (CLEO) is the premier international forum for scientific and technical optics, uniting the fields of lasers and opto-electronics by bringing together all aspects of laser technology, from basic research to industry applications. CLEO: Expo showcases the latest products and applications from more than 300 participating companies from around the world, providing hands-on demonstrations of the latest market innovations and applications. The Expo also offers valuable on-floor programming, including Market Focus and the Technology Transfer program.

Sponsored by the American Physical Society's (APS) Laser Science Division, IEEE Photonics Society and The Optical Society (OSA), CLEO provides the full range of critical developments in the field, showcasing the most significant milestones from laboratory to marketplace. With an unparalleled breadth and depth of coverage, CLEO connects all of the critical vertical markets in lasers and electro-optics. For more information, visit www.cleoconference.org. CLEO: 2014 takes place June 8 - 13 at the San Jose Convention Center.

Lyndsay Meyer | Eurek Alert!
Further information:
http://www.cleoconference.org/home/news-and-press/cleo-press-releases/precision-guided-epidurals-and-better-blood-monito/

Further reports about: Convention Monitors OCT blood diabetic diseases glaucoma lasers retinopathy spinal wavelengths

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>