Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first portable system for measuring the damage to hearing in cetaceans

30.12.2008
The audiographic measuring system makes it possible to make in situ diagnoses of possible hearing loss in cetaceans. In the case of beached animals, it is able to determine their chances of survival without having to be taken to a laboratory.

Researchers from Spain, the United Kingdom, France, the Netherlands and the United States were involved in the project, which was conducted thanks to the support given by the Fundación BBVA.

Cetaceans are the most threatened species in the world, due, amongst other things, to problems directly caused by human sources of sound. This can lead to collisions with ships and the mass beaching of animals after military maneuvers.

Although there is no conclusive data of the impact of noise pollution on the disorientation and death of these animals, it has been widely accepted that the negative effects of noise have irreversible repercussions on their sense of hearing.

The purpose of this project is to carry out research into how noise from human activities affects cetacean populations and the marine environment in general. The results of the research will enable the team to develop and apply specific solutions that monitor human activity so that a balance can be achieved between human development and the conservation of marine mammals.

The only practicable system to date for measuring the hearing sensitivity of cetaceans was to take them to a laboratory. However, given the size of these animals and their precarious state of health when they are beached, this was a complex procedure and posed considerable risks to their survival. This project has made it possible to develop the first portable system for measuring the hearing sensitivity of cetaceans in situ. Thus, a diagnosis can be made of their loss of hearing, and in the case of beached animals, an assessment made of their chances of survival without having to move them.

The propagation of biological acoustic signals involved in echolocation is also a subject for study in the framework of this project. Special emphasis is placed on how animals detect their prey in noisy environments. The Laboratory of Applied Bioacoustics on the Vilanova i la Geltrú Campus is also working towards the goals of the project and is putting the final touches to a system that involves preventing the collision of cetaceans with fishing nets.

Rossy Laciana | alfa
Further information:
http://www.upc.edu/saladepremsa

More articles from Medical Engineering:

nachricht Heart examinations: Miniature particle accelerator saves on contrast agents
27.02.2017 | Technische Universität München

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>