Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first portable system for measuring the damage to hearing in cetaceans

30.12.2008
The audiographic measuring system makes it possible to make in situ diagnoses of possible hearing loss in cetaceans. In the case of beached animals, it is able to determine their chances of survival without having to be taken to a laboratory.

Researchers from Spain, the United Kingdom, France, the Netherlands and the United States were involved in the project, which was conducted thanks to the support given by the Fundación BBVA.

Cetaceans are the most threatened species in the world, due, amongst other things, to problems directly caused by human sources of sound. This can lead to collisions with ships and the mass beaching of animals after military maneuvers.

Although there is no conclusive data of the impact of noise pollution on the disorientation and death of these animals, it has been widely accepted that the negative effects of noise have irreversible repercussions on their sense of hearing.

The purpose of this project is to carry out research into how noise from human activities affects cetacean populations and the marine environment in general. The results of the research will enable the team to develop and apply specific solutions that monitor human activity so that a balance can be achieved between human development and the conservation of marine mammals.

The only practicable system to date for measuring the hearing sensitivity of cetaceans was to take them to a laboratory. However, given the size of these animals and their precarious state of health when they are beached, this was a complex procedure and posed considerable risks to their survival. This project has made it possible to develop the first portable system for measuring the hearing sensitivity of cetaceans in situ. Thus, a diagnosis can be made of their loss of hearing, and in the case of beached animals, an assessment made of their chances of survival without having to move them.

The propagation of biological acoustic signals involved in echolocation is also a subject for study in the framework of this project. Special emphasis is placed on how animals detect their prey in noisy environments. The Laboratory of Applied Bioacoustics on the Vilanova i la Geltrú Campus is also working towards the goals of the project and is putting the final touches to a system that involves preventing the collision of cetaceans with fishing nets.

Rossy Laciana | alfa
Further information:
http://www.upc.edu/saladepremsa

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>