Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portable breast scanner allows cancer detection in the blink of an eye

27.10.2010
Professor Zhipeng Wu has invented a portable scanner based on radio frequency technology, which is able to show in a second the presence of tumours – malignant and benign – in the breast on a computer.

Using radio frequency or microwave technology for breast cancer detection has been proven by researchers in the US, Canada and UK. However, up to now, it can take a few minutes for an image to be produced, and this had to be done in a hospital or specialist care centre.

Now Professor Wu, from the University's School of Electrical and Electronic Engineering, says concerned patients can receive real-time video images in using the radio frequency scanner which would clearly and simply show the presence of a tumour.

Not only is this a quicker and less-intrusive means of testing, it also means women can be tested at GP surgeries, which could help dramatically reduce waiting times and in some cases avoid unnecessary X-ray mammography. The scanner could also be used at home for continuous monitoring of breast health.

The patented real-time radio frequency scanner uses computer tomography and works by using the same technology as a mobile phone, but with only a tiny fraction of its power.

This makes it both safe and low-cost and the electronics can be housed in a case the size of a lunch box for compactness and portability. Other existing systems are much larger.

Breast cancer is the second biggest killer in women, accounting for 8.2% of all cancer deaths. October is National Breast Cancer Awareness month.

The usual way of detecting breast cancer up to now is mammography, which works well for women over the age of 50 and can give results of up to 95% accuracy.

But it is far less effective for younger women. The detection rate could be as low as 60% for women under the age of 50, which accounts for 20% of all breast cancer cases.

At that stage it is even more important get accurate diagnosis. Early diagnosis and treatment could save thousands of lives.

The main difference between the two methods is that mammography works on density, while radio frequency technique works on dielectric contrasts between normal and diseased breast tissues.

In Professor Wu's design, as soon as the breast enters the cup an image appears on screen.

The presence of a tumour or other abnormality will show up in red as the sensor detects the difference in tissue contrasts at radio frequencies. Malignant tissues have higher permittivity and conductivity and therefore appear differently than normal ones to a screen.

Up to 30 images are generated every second, meaning a breast scan could be over in a far shorter time than they are currently.

Professor Wu said: "The system we have is portable and as soon as you lie down you can get a scan – it's real-time.

"The real-time imaging minimises the chance of missing a breast tumour during scanning.

"Other systems also need to use a liquid or gel as a matching substance, such as in an ultrasound, to work but with our system you don't need that – it can be done simply in oil, milk, water or even with a bra on.

"Although there is still research to be done, the system has great potential to bring a new way for breast cancer diagnosis.

"This will benefit millions of women in both developed and developing countries bearing in mind that one in nine women may develop breast cancer in their lifetime."

Professor Wu submitted his innovation of the sensor system to the IET Innovation Awards. The technology has been shortlisted in both Electronics and Measurement in Action categories. The winners will be announced in November.

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>