Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Portable breast scanner allows cancer detection in the blink of an eye

Professor Zhipeng Wu has invented a portable scanner based on radio frequency technology, which is able to show in a second the presence of tumours – malignant and benign – in the breast on a computer.

Using radio frequency or microwave technology for breast cancer detection has been proven by researchers in the US, Canada and UK. However, up to now, it can take a few minutes for an image to be produced, and this had to be done in a hospital or specialist care centre.

Now Professor Wu, from the University's School of Electrical and Electronic Engineering, says concerned patients can receive real-time video images in using the radio frequency scanner which would clearly and simply show the presence of a tumour.

Not only is this a quicker and less-intrusive means of testing, it also means women can be tested at GP surgeries, which could help dramatically reduce waiting times and in some cases avoid unnecessary X-ray mammography. The scanner could also be used at home for continuous monitoring of breast health.

The patented real-time radio frequency scanner uses computer tomography and works by using the same technology as a mobile phone, but with only a tiny fraction of its power.

This makes it both safe and low-cost and the electronics can be housed in a case the size of a lunch box for compactness and portability. Other existing systems are much larger.

Breast cancer is the second biggest killer in women, accounting for 8.2% of all cancer deaths. October is National Breast Cancer Awareness month.

The usual way of detecting breast cancer up to now is mammography, which works well for women over the age of 50 and can give results of up to 95% accuracy.

But it is far less effective for younger women. The detection rate could be as low as 60% for women under the age of 50, which accounts for 20% of all breast cancer cases.

At that stage it is even more important get accurate diagnosis. Early diagnosis and treatment could save thousands of lives.

The main difference between the two methods is that mammography works on density, while radio frequency technique works on dielectric contrasts between normal and diseased breast tissues.

In Professor Wu's design, as soon as the breast enters the cup an image appears on screen.

The presence of a tumour or other abnormality will show up in red as the sensor detects the difference in tissue contrasts at radio frequencies. Malignant tissues have higher permittivity and conductivity and therefore appear differently than normal ones to a screen.

Up to 30 images are generated every second, meaning a breast scan could be over in a far shorter time than they are currently.

Professor Wu said: "The system we have is portable and as soon as you lie down you can get a scan – it's real-time.

"The real-time imaging minimises the chance of missing a breast tumour during scanning.

"Other systems also need to use a liquid or gel as a matching substance, such as in an ultrasound, to work but with our system you don't need that – it can be done simply in oil, milk, water or even with a bra on.

"Although there is still research to be done, the system has great potential to bring a new way for breast cancer diagnosis.

"This will benefit millions of women in both developed and developing countries bearing in mind that one in nine women may develop breast cancer in their lifetime."

Professor Wu submitted his innovation of the sensor system to the IET Innovation Awards. The technology has been shortlisted in both Electronics and Measurement in Action categories. The winners will be announced in November.

Daniel Cochlin | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>