Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


PolyU makes great strides in ultrasound diagnosis for breast cancer

Making use of advanced ultrasound technology, researchers of The Hong Kong Polytechnic University (PolyU) have successfully developed a low-cost and compact Ultrasound Elasticity Imaging System for the examination and diagnosis of breast cancer.

This breakthrough is the hard work of a research team led by Professor Zheng Yongping, Professor of PolyU's Department of Health Technology and Informatics and Associate Director of PolyU's Research Institute of Innovative Products and Technologies.

Working in collaboration with a Guangdong-based ultrasound diagnostic company, Shantou Institute of Ultrasound Instruments Co. Ltd. (SIUI), PolyU researchers have implemented their novel algorithm into conventional ultrasound scanner for achieving elasticity imaging, thereby cutting down the cost by leaps and bounds for ultrasound scanners with such a function. PolyU has already filed a patent for this breakthrough.

While existing ultrasound diagnostic machines with elasticity function is bulky and of the size of a three-gate refrigerator, PolyU-developed Ultrasound Elasticity Imaging System is compact and robust like a desktop computer. Unlike traditional million-dollar-worth models which are mostly installed in hospitals, the new machine can be readily installed in a clinic, providing convenience for frontline physicians to find the slightest trace of the deadly tumour which may lead to breast cancer.

Professor Zheng Yongping further explained that the basic principle for elasticity imaging is to map the tissue stiffness so that the tumour region can be clearly viewed. The technique is similar to finger manual palpation, but more accurate with medical imaging and quantitative information. It has been widely reported that ultrasound elasticity imaging together with conventional B-mode imaging can significantly improve the accuracy for breast cancer diagnosis. Ultrasound diagnosis for breast cancer is particularly important for women with age below 50, who are normally not suitable for mammography, as the dense breast tissue may affect the results.

With this breakthrough, the manufacturing cost of Ultrasound Elasticity Imaging System can also be cut down by one-tenth, making this recent development more accessible to the community at large and less developed countries. This is the first time for a China-based brand of ultrasound scanner to have elasticity imaging function, and is a successful example of how PolyU cutting edge applied research can add values to manufacturers in Pearl River Delta Region. PolyU researchers have been working in collaboration with mainland hospitals in Guangdong and Shanghai to put the new system to clinical trials. They are also looking for collaboration opportunities with local hospitals and clinics.

According to recent statistics in the "Breast Cancer Facts in Hong Kong 2008 Report", breast cancer has become a leading cancer in women since 1994 and it is also the fastest growing cancer in incidence among women in Hong Kong. Hong Kong tops Asia countries/cities in terms of crude and age-standardized rates of breast cancer.

Currently about 20 per cent of breast cancer were detected through breast screening modalities such as mammogram, ultrasound and regular clinical breast examination. On the average, eight new cases of breast cancer are diagnosed every day in Hong Kong. There is also an increasing trend of women being diagnosed at an earlier age, particularly during their late 30s or early 40s. PolyU researchers believe their work will lead to more accurate and convenient screening for breast cancer so that early treatment can be provided to more patients.

This project was kicked off in 2006 with a $3 million research grant for "Development of PC- and PDA-based ultrasound measurement and imaging devices", supported by the SAR Government's Innovation and Technology Fund (ITF) and matching fund from industry. In addition to breast cancer diagnosis, application-specific ultrasound devices for the assessment of liver fibrosis, scoliosis, burn scar, diabetic foot, muscle function, articular cartilage degeneration, etc., have also been developed by the PolyU researchers with the supports from ITF, Hong Kong Research Grant Council, and other funds.

Press contact: Professor Zheng Yongping
Professor, Department of Health Technology and Informatics
Tel: (852) 2766 7664

Evelyn Chan | Research asia research news
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>