Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET Predicts Outcomes for Patients with Cervical Spinal Cord Compression

05.09.2013
Metabolic activity in spine indicates optimal time for surgery
For patients with degenerative cervical myelopathy, imaging with 18F-FDG positron emission tomography (PET) could act as a marker for a potentially reversible phase of the disease in which substantial clinical improvement can be achieved.

According to research published in the September issue of The Journal of Nuclear Medicine, patients who exhibited hypermetabolism at the point of compression in their spine experienced improved outcomes after undergoing decompressive surgery.

Cervical spinal stenosis is a condition in which the spinal canal narrows in the neck. While many patients lack symptoms, once symptoms appear, it usually indicates the presence of myelopathy. This compression can lead to progressive neurologic deficits, such as numbness, weakness or tingling in a leg, foot, arm or hand.

In the study “Hypermetabolism in 18F-FDG PET Predicts Favorable Outcome Following Decompressive Surgery in Patients with Degenerative Cervical Myelopathy,” researchers aimed to assess the regional changes of glucose metabolism of the cervical spinal cord using 18F-FDG PET. “To date, experiences with 18F-FDG PET in symptomatic patients with degenerative cervical spine stenosis and consecutive compressive myelopathy are very limited,” said Norbert Galldiks, MD, one of the lead researchers of the study.“In the present study, we present the results of preoperative magnetic resoncance imaging and 18F-FDG PET imaging and postoperative follow-up imaging 12 months after decompressive surgery. Imaging findings were correlated with the clinical outcome.”

Researchers observed two significantly different patterns of 18F-FDG uptake among the 20 study participants prior to surgery—approximately half of the patients had increased 18F-FDG uptake at the site of spinal cord compression and were classified as myelopathy type 1, while the other half had inconspicuous 18F-FDG uptake and were classified as myelopathy type 2. Post-operatively, those with myelopathy type 1 had a marked decrease in 18F-FDG uptake, while myelopathy type 2 patients had only a moderate decline in uptake.

The overall outcome in myelopathy type 1 patients was favorable, and the patients showed significant improvement on their functional status assessment. In contrast, there was no significant clinical change in patients with inconspicuous 18-FDG uptake.

“A hypermetabolism of the cervical spinal cord at the level of cervical spine stenosis as indicated by a locally increased 18F-FDG uptake seems to be a marker for a potentially reversible phase of a compression-induced cervical myelopathy,” explained Galldiks. “The lesion of the spinal cord seems to be predominantly functional. Presence of this metabolic pattern reflects the time frame when decompressive surgery can lead to substantial clinical improvement. In order to stratify eligible patients for decompressive surgery, our findings may help to implement 18F-FDG PET investigations of the cervical spine in clinical routine.”

Authors of the article “Hypermetabolism in 18F-FDG PET Predicts Favorable Outcome Following Decompressive Surgery in Patients with Degenerative Cervical Myelopathy” include Frank W. Floeth and Jörg Herdmann, Department of Neurosurgery, University Düsseldorf, Düsseldorf, Germany, and Department of Spine and Pain, St. Vinzenz Hospital, Düsseldorf, Germany; Norbert Galldiks, Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany, and Department of Neurology, University of Cologne, Cologne, Germany; Sven Eicker and Hans-Jakob Steiger, Department of Neurosurgery, University Düsseldorf, Düsseldorf, Germany; Gabriele Stoffels and Karl-Josef Langen, Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Gerald Antoch, Department of Diagnostic and Interventional Radiology, University Düsseldorf, Düsseldorf, Germany; and Sasha Rhee, Department of Spine and Pain, St. Vinzenz Hospital, Düsseldorf, Germany.

Please visit the SNMMI Newsroom to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Susan Martonik at (703) 652-6773 or smartonik@snmmi.org.Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today’s medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI’s more than 19,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit www.snmmi.org.

Susan Martonik | EurekAlert!
Further information:
http://www.snm.org

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>