Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET Predicts Outcomes for Patients with Cervical Spinal Cord Compression

05.09.2013
Metabolic activity in spine indicates optimal time for surgery
For patients with degenerative cervical myelopathy, imaging with 18F-FDG positron emission tomography (PET) could act as a marker for a potentially reversible phase of the disease in which substantial clinical improvement can be achieved.

According to research published in the September issue of The Journal of Nuclear Medicine, patients who exhibited hypermetabolism at the point of compression in their spine experienced improved outcomes after undergoing decompressive surgery.

Cervical spinal stenosis is a condition in which the spinal canal narrows in the neck. While many patients lack symptoms, once symptoms appear, it usually indicates the presence of myelopathy. This compression can lead to progressive neurologic deficits, such as numbness, weakness or tingling in a leg, foot, arm or hand.

In the study “Hypermetabolism in 18F-FDG PET Predicts Favorable Outcome Following Decompressive Surgery in Patients with Degenerative Cervical Myelopathy,” researchers aimed to assess the regional changes of glucose metabolism of the cervical spinal cord using 18F-FDG PET. “To date, experiences with 18F-FDG PET in symptomatic patients with degenerative cervical spine stenosis and consecutive compressive myelopathy are very limited,” said Norbert Galldiks, MD, one of the lead researchers of the study.“In the present study, we present the results of preoperative magnetic resoncance imaging and 18F-FDG PET imaging and postoperative follow-up imaging 12 months after decompressive surgery. Imaging findings were correlated with the clinical outcome.”

Researchers observed two significantly different patterns of 18F-FDG uptake among the 20 study participants prior to surgery—approximately half of the patients had increased 18F-FDG uptake at the site of spinal cord compression and were classified as myelopathy type 1, while the other half had inconspicuous 18F-FDG uptake and were classified as myelopathy type 2. Post-operatively, those with myelopathy type 1 had a marked decrease in 18F-FDG uptake, while myelopathy type 2 patients had only a moderate decline in uptake.

The overall outcome in myelopathy type 1 patients was favorable, and the patients showed significant improvement on their functional status assessment. In contrast, there was no significant clinical change in patients with inconspicuous 18-FDG uptake.

“A hypermetabolism of the cervical spinal cord at the level of cervical spine stenosis as indicated by a locally increased 18F-FDG uptake seems to be a marker for a potentially reversible phase of a compression-induced cervical myelopathy,” explained Galldiks. “The lesion of the spinal cord seems to be predominantly functional. Presence of this metabolic pattern reflects the time frame when decompressive surgery can lead to substantial clinical improvement. In order to stratify eligible patients for decompressive surgery, our findings may help to implement 18F-FDG PET investigations of the cervical spine in clinical routine.”

Authors of the article “Hypermetabolism in 18F-FDG PET Predicts Favorable Outcome Following Decompressive Surgery in Patients with Degenerative Cervical Myelopathy” include Frank W. Floeth and Jörg Herdmann, Department of Neurosurgery, University Düsseldorf, Düsseldorf, Germany, and Department of Spine and Pain, St. Vinzenz Hospital, Düsseldorf, Germany; Norbert Galldiks, Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany, and Department of Neurology, University of Cologne, Cologne, Germany; Sven Eicker and Hans-Jakob Steiger, Department of Neurosurgery, University Düsseldorf, Düsseldorf, Germany; Gabriele Stoffels and Karl-Josef Langen, Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany; Gerald Antoch, Department of Diagnostic and Interventional Radiology, University Düsseldorf, Düsseldorf, Germany; and Sasha Rhee, Department of Spine and Pain, St. Vinzenz Hospital, Düsseldorf, Germany.

Please visit the SNMMI Newsroom to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Susan Martonik at (703) 652-6773 or smartonik@snmmi.org.Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today’s medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI’s more than 19,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit www.snmmi.org.

Susan Martonik | EurekAlert!
Further information:
http://www.snm.org

More articles from Medical Engineering:

nachricht Self-powered paper-based 'SPEDs' may lead to new medical-diagnostic tools
23.08.2017 | Purdue University

nachricht New technique to treating mitral valve diseases: First patient data
22.08.2017 | Universitätsspital Bern

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>