Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET/CT scans may help detect recurring prostate cancer earlier

03.09.2009
Journal of Nuclear Medicine highlights new findings on molecular imaging and prostate cancer

A new study published in the September issue of The Journal of Nuclear Medicine shows that positron emission tomography (PET)/computer tomography (CT) scans with the imaging agent choline could detect recurring prostate cancer sooner than conventional imaging technologies in some patients who have had their prostates surgically removed.

In addition, the journal also includes a paper that provides a broader examination of new agents and techniques for imaging prostate cancer, which accounts for 10 percent of all cancer-related deaths in the United States and is the most common type of cancer among men.

Many men diagnosed with prostate cancer choose to have a radical prostatecomy, which involves surgical removal of the entire gland and surrounding tissue. However, prostate cancer recurs within five years in as many as 30 percent of these patients. Physicians monitor patients who have undergone the procedure by checking levels of prostate-specific antigen (PSA) in the blood. If PSA is detected after radical prostatectomy—known as biochemical relapse—then imaging techniques are essential to determine whether and exactly where in the body the cancer has recurred. The study examined PET/CT scans with radioactively labeled choline—a promising molecular imaging tool which has been shown to be more accurate than conventional imaging techniques such as CT, magnetic resonance imaging (MRI) and bone scintigraphy in detecting recurrent prostate cancer.

"In most patients with biochemical relapse after radical prostatectomy, conventional imaging methods often return false-negative results, meaning that the imaging techniques fail to detect cancer that is present in the body," said Paolo Castellucci, M.D., of the nuclear medicine unit, hematology-oncology and laboratory medicine department, Azienda Ospedaliero-Universitaria di Bologna Policlinico S. Orsola-Malpghi, University of Bologna, Italy, and lead author of the study. "Our study found that for some patients, PET/CT with choline can improve the detection of cancer soon after PSA levels are measured. This enables physicians to tailor treatment to individual patients in the early stages of recurrence, thus increasing their chances of recovery."

The study included a total of 190 patients who had undergone radical prostatectomy and showed biochemical relapse in followup examinations. These patients were grouped according to PSA levels and studied with choline PET/CT scans. In addition, researchers also factored in PSA kinetic factors such as velocity—or the rate at which PSA levels change—and the PSA doubling time for each patient.

The study found that whole body PET/CT imaging with choline is significantly better than conventional imaging technologies in detecting prostate cancer in patients with biochemical relapse after radical prostatectomy. Researchers also found a strong association between PET/CT detection of recurrent cancer, PSA levels, and PSA kinetics. The authors suggest that based on the results, only patients with a high probability of having a positive scan based on PSA levels and kinetics should undergo choline PET/CT scans. By using these criteria, the number of inappropriate choline PET/CT scans can be reduced and early detection of prostate cancer relapse can be improved.

A paper examining the state of imaging technologies in diagnosing, staging, and monitoring treatment of prostate cancer is also featured in this month's journal. The paper, based on a recent workshop held at the National Cancer Institute, reviews the technologies in light of growing concerns about overdiagnosing and overtreating prostate cancer. In some cases, detectable prostate cancer is very slow-growing and remains localized in the prostate. The rate of overdiagnosis of prostate cancer—defined as diagnosis in men who would not have clinical symptoms during their lifetime—has been estimated to be as high as 50 percent. In these cases, decisions to treat the cancer could have significant side effects such as impotence and incontinence, which can affect patients' quality of life.

"Conventional imaging techniques such as CT, MRI, and ultrasound leave substantial room for improvement in determining the extent and severity of prostate cancer," said Martin Pomper, M.D., Ph.D., professor in the department of radiology and radiological science, Johns Hopkins Medical Institutions, Baltimore. "New biomarkers may soon rival PSA for monitoring the presence and extent of disease. Our brief review examines the role of new and emerging molecular imaging agents for initially diagnosing, staging, detecting recurrence after treatment and measuring response to therapy."

Despite a variety of emerging techniques and probes using multiple imaging modalities, the paper notes, a simple, accurate method for image-guided therapy within the prostate is still needed. For metastatic disease, more careful study should be conducted of combinations of markers for prostate cancer, such as androgen receptor and prostate-specific membrane antigen (PSMA), which are excellent targets for imaging and therapy. In addition, new selective serum and urinary biomarkers such as the urinary marker sarcosine should be merged with molecular imaging tools. Pomper adds,"The article by Castellucci, et. al., in this issue illustrates nicely how connecting a serum marker—in this case PSA—with imaging can facilitate choosing the correct patients for an imaging study, as well as cut back on false negative results for that study." A practical multimodality imaging approach, coupled with an array of relevant bioarkers sampled from the blood and urine, will provide the best chance for effective management of prostate cancer, the paper concludes.

P. Castellucci, C. Fuccio, C. Nanni, I. Santi, A. Rizzello, F. Lodi, A. Franceshelli, G. Martorana, F. Manferrari, and S. Fanti, S. Sharp, B. Shulkin, M. Gelfand, S. Salisbury, W. Furman, Nuclear Medicine Unit, Hematology-Oncology and Laboratory Medicine Department, and Urology Unit, Specialist Surgery and Anaesthesiology Department, Azienda Ospedaliero-Universitaria di Bologna Policlinico S. Orsola-Malpghi, University of Bologna, Italy; "Influence of Trigger PSA and PSA Kenetics on 11C-Choline PET/CT Detection Rate in Patients with Biochemical Relapse After Radical Prostatectomy," The Journal of Nuclear Medicine, September 2009.

A. Zaheer, S. Cho, and M. Pomper, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore; "New Agents and Techniques for Imaging Prostate Cancer," The Journal of Nuclear Medicine, September 2009.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit www.snm.org.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>