Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Painless 'microneedle' patch may take the sting out of shots

21.08.2009
Good news for people fearful of needles and squeamish of shots: Scientists at the 238th National Meeting of the American Chemical Society report the design of a painless patch that may someday render hypodermic needles — as well as annual flu shots — a thing of the past.

Lined with tiny "microneedles," these patches could make treatment of diabetes and a wide range of other diseases safer, more effective and less painful. Used as tiny hypodermic needles, they could improve treatment of macular degeneration and other diseases of the eye.

"It's our goal to get rid of the need for hypodermic needles in many cases and replace them with a patch that can be painlessly and simply applied by a patient," says Mark Prausnitz, Ph.D. "If you can move to something that's as easy to apply as a band-aid, you've now opened the door for people to self-administer their medicine without special training."

Prausnitz says that advances in the electronics industry in microfabricating very small objects like transistors enabled the development of microneedles. "We've built off those technological advances to address a need in medicine," he explains. "We're trying to bring the two worlds together." Each needle is only a few hundred microns long, about the width of a few strands of human hair.

Prausnitz and his colleagues at the Georgia Institute of Technology suggest that the microneedle patch could, for instance, replace yearly trips to the doctor for flu shots.

"Although it would probably first be used in a clinical setting, our vision is to have a self-administered flu vaccine patch. So instead of making an appointment with your doctor to get your flu shot, you can stop by the pharmacy or even get a patch in the mail and self-apply. We think that could very much increase the vaccine coverage since it would be easier for people to be vaccinated," Prausnitz explains.

In a collaboration with Emory University, Prausnitz and his team administered flu vaccines via conventional injections and microneedle patches in mice. After exposing the mice to the flu, they compared the resulting immune response and antibody levels. They found that the antibody levels were the same by either route. Taking a closer look, they discovered that microneedle delivery resulted in a better protective immune response by other measures.

"Toward the goal of a flu vaccine patch, we are continuing the animal studies, but we're also working toward our first human trial, which we hope to do in 2010," Prausnitz says.

Microneedles are not just able to deliver drugs through the skin — they can also be used for targeted drug delivery in the eye. They may help create an improved treatment for macular degeneration, the leading cause of blindness in the United States.

In recent years, macular degeneration has become treatable thanks to new drugs that halt and partially reverse the disease. The new drugs are a victory for the millions of patients suffering macular degeneration, but the treatment is not pleasant — the drugs must be injected directly into the eye every month.

"For the squeamish there are obvious drawbacks, but more importantly, there are real safety concerns about that kind of repeated injection into the eye. With a microneedle, we can still do the same kind of concept, injecting something into the eye, but we can now do it with a very short needle that doesn't penetrate all the way in," says Prausnitz, adding that "no one else is working on microneedle-based drug delivery to the eye."

He notes that microneedle treatments of the eye can target specific tissues in the eye. "In localizing the delivery, microneedle treatments for macular degeneration and other diseases of the eye may prove safer than conventional needles. We're now doing experiments with rabbits and non-human primates — we hope to have the first human trial in the next few years," says Prausnitz.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>