Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Optical Tool Could Produce ‘Virtual Biopsies’ for Brain Cancer

06.11.2009
As a Johns Hopkins electrical engineer, Jin U. Kang has spent years tinkering with lasers and optical fiber, studying what happens when light strikes matter. Now, he’s taking on a new challenge: brain surgery.

More precisely, Kang is building a tool to help brain surgeons locate and get a clear look at cancerous tissue. In some cases, Kang says, this device could eliminate the need to cut into the brain for a traditional biopsy, a procedure that can pose risks to the patient.

“The idea,” he says, “is to provide instant high-resolution pictures of a small segment of the brain without actually touching the tissue. These pictures could let the doctor conduct a ‘virtual biopsy’ to see where the tumor is and whether it is benign or malignant. And when it’s time to cut out the cancer, these images could help a surgeon see and avoid healthy tissue.”

Kang’s concept recently received a financial boost that should help move it from the drawing board to the operating room. He was awarded $450,000 in federal stimulus package funds to develop the technology for this new high-tech surgical instrument. The two-year grant has been provided by the Institute of Neurological Disorders and Stroke, part of the National Institutes of Health.

The Johns Hopkins professor asked the institute for funding last year. His proposal was well-reviewed, Kang says, but available funds were exhausted by other applicants. When the federal stimulus package provided more money to the institute earlier this year, Kang’s surgical instrument proposal was funded. “If it weren’t for the stimulus money, we probably would not have been able to go ahead with this for at least another year,” he says. “This has moved the project forward, and for that I’m grateful.”

Kang’s team has made great strides in refining the technology, but the surgical tool has not yet been tried out on human patients. The federal grant will enable the researchers to begin animal and human cadaver testing in the coming months. Human patient trials could begin within five years.

To help bring his new technology to hospitals, Kang, who is chair of the Department of Electrical and Computer Engineering in Johns Hopkins’ Whiting School of Engineering, is collaborating with neurosurgeons in the university’s School of Medicine and with Russell Taylor, who is director of the Johns Hopkins-based National Science Foundation Engineering Research Center for Computer-Integrated Surgical Systems and Technology.

Kang’s brain imaging design has already generated praise among those who might one day use it in the frontlines of their work: neurosurgeons.

“This instrument would help us perform a biopsy easily and safely, and guide us in removing tumors,” says George Jallo, a pediatric neurosurgeon at Johns Hopkins Children’s Center and associate professor of neurosurgery at the university’s School of Medicine. “The technology should allow us to distinguish between the tumor and the critical brain structures around it that we want to avoid, such as blood vessels and nerves.”

To give doctors this detailed view of brain tissue, Kang’s device employs ultra-thin optical fiber, the material used in long-distance communication systems, to direct harmless low-powered laser light onto the area the surgeon wants to examine. When the light strikes the tissue, most of it bounces away in a scattered, incoherent manner. But using a technique called optical coherence tomography, the small portion of light that is scattered back can be collected and used to construct a high-resolution three-dimensional picture of the tissue, down to the cellular level. These images are significantly sharper than those produced by MRI or ultrasound equipment, Kang says, and should give surgeons a better look at the boundaries of a tumor and the presence of blood vessels and healthy tissue that must be preserved.

Yet, compared to the older, widely used imaging systems, the new technology is expected to be much less expensive, perhaps less than $10,000. “It’s a very simple and cost-effective system,” Kang says.

Kang’s project is supported by one of more than 300 stimulus-funded research grants totaling almost $150 million that Johns Hopkins has garnered since Congress passed the American Recovery and Revitalization Act of 2009 (informally known by the acronym “ARRA”), bestowing the National Institutes of Health and the National Science Foundation with $12.4 billion in extra money to underwrite research grants by September 2010. The stimulus package -- which provided $550 billion in new spending, including the above grants, and $275 billion in tax relief -- is part of President Barack Obama’s plan to kick-start a stagnant economy by doling out dollars for transportation projects, infrastructure building, the development of new energy sources and job creation, and financing research that will benefit humankind. To date, 78 jobs have been created at Johns Hopkins directly from ARRA funding; in addition, positions have been saved when other grants ran out.

Kang joined the faculty of the Department of Electrical and Computer Engineering 11 years ago and has developed a number of novel fiber optic devices for sensors and communications. “My specialty now is the use of optical techniques in various medical devices and systems,” he says. In addition to the brain surgery instrument, he is collaborating with computer scientists at the university on a steady-hand tool that would allow physicians to conduct extremely delicate surgery on blood vessels in the retina of the eye.

Color images of the prototype and the researcher available; contact Phil Sneiderman.

Related links:
Jin U. Kang’s Lab Page: http://www.ece.jhu.edu/photonics/
Department of Electrical and Computer Engineering: http://www.ece.jhu.edu/
NSF Engineering Research Center for Computer-Integrated Surgical Systems and
Technology: http://www.cisst.org/

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>