Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Optical Tool Could Produce ‘Virtual Biopsies’ for Brain Cancer

06.11.2009
As a Johns Hopkins electrical engineer, Jin U. Kang has spent years tinkering with lasers and optical fiber, studying what happens when light strikes matter. Now, he’s taking on a new challenge: brain surgery.

More precisely, Kang is building a tool to help brain surgeons locate and get a clear look at cancerous tissue. In some cases, Kang says, this device could eliminate the need to cut into the brain for a traditional biopsy, a procedure that can pose risks to the patient.

“The idea,” he says, “is to provide instant high-resolution pictures of a small segment of the brain without actually touching the tissue. These pictures could let the doctor conduct a ‘virtual biopsy’ to see where the tumor is and whether it is benign or malignant. And when it’s time to cut out the cancer, these images could help a surgeon see and avoid healthy tissue.”

Kang’s concept recently received a financial boost that should help move it from the drawing board to the operating room. He was awarded $450,000 in federal stimulus package funds to develop the technology for this new high-tech surgical instrument. The two-year grant has been provided by the Institute of Neurological Disorders and Stroke, part of the National Institutes of Health.

The Johns Hopkins professor asked the institute for funding last year. His proposal was well-reviewed, Kang says, but available funds were exhausted by other applicants. When the federal stimulus package provided more money to the institute earlier this year, Kang’s surgical instrument proposal was funded. “If it weren’t for the stimulus money, we probably would not have been able to go ahead with this for at least another year,” he says. “This has moved the project forward, and for that I’m grateful.”

Kang’s team has made great strides in refining the technology, but the surgical tool has not yet been tried out on human patients. The federal grant will enable the researchers to begin animal and human cadaver testing in the coming months. Human patient trials could begin within five years.

To help bring his new technology to hospitals, Kang, who is chair of the Department of Electrical and Computer Engineering in Johns Hopkins’ Whiting School of Engineering, is collaborating with neurosurgeons in the university’s School of Medicine and with Russell Taylor, who is director of the Johns Hopkins-based National Science Foundation Engineering Research Center for Computer-Integrated Surgical Systems and Technology.

Kang’s brain imaging design has already generated praise among those who might one day use it in the frontlines of their work: neurosurgeons.

“This instrument would help us perform a biopsy easily and safely, and guide us in removing tumors,” says George Jallo, a pediatric neurosurgeon at Johns Hopkins Children’s Center and associate professor of neurosurgery at the university’s School of Medicine. “The technology should allow us to distinguish between the tumor and the critical brain structures around it that we want to avoid, such as blood vessels and nerves.”

To give doctors this detailed view of brain tissue, Kang’s device employs ultra-thin optical fiber, the material used in long-distance communication systems, to direct harmless low-powered laser light onto the area the surgeon wants to examine. When the light strikes the tissue, most of it bounces away in a scattered, incoherent manner. But using a technique called optical coherence tomography, the small portion of light that is scattered back can be collected and used to construct a high-resolution three-dimensional picture of the tissue, down to the cellular level. These images are significantly sharper than those produced by MRI or ultrasound equipment, Kang says, and should give surgeons a better look at the boundaries of a tumor and the presence of blood vessels and healthy tissue that must be preserved.

Yet, compared to the older, widely used imaging systems, the new technology is expected to be much less expensive, perhaps less than $10,000. “It’s a very simple and cost-effective system,” Kang says.

Kang’s project is supported by one of more than 300 stimulus-funded research grants totaling almost $150 million that Johns Hopkins has garnered since Congress passed the American Recovery and Revitalization Act of 2009 (informally known by the acronym “ARRA”), bestowing the National Institutes of Health and the National Science Foundation with $12.4 billion in extra money to underwrite research grants by September 2010. The stimulus package -- which provided $550 billion in new spending, including the above grants, and $275 billion in tax relief -- is part of President Barack Obama’s plan to kick-start a stagnant economy by doling out dollars for transportation projects, infrastructure building, the development of new energy sources and job creation, and financing research that will benefit humankind. To date, 78 jobs have been created at Johns Hopkins directly from ARRA funding; in addition, positions have been saved when other grants ran out.

Kang joined the faculty of the Department of Electrical and Computer Engineering 11 years ago and has developed a number of novel fiber optic devices for sensors and communications. “My specialty now is the use of optical techniques in various medical devices and systems,” he says. In addition to the brain surgery instrument, he is collaborating with computer scientists at the university on a steady-hand tool that would allow physicians to conduct extremely delicate surgery on blood vessels in the retina of the eye.

Color images of the prototype and the researcher available; contact Phil Sneiderman.

Related links:
Jin U. Kang’s Lab Page: http://www.ece.jhu.edu/photonics/
Department of Electrical and Computer Engineering: http://www.ece.jhu.edu/
NSF Engineering Research Center for Computer-Integrated Surgical Systems and
Technology: http://www.cisst.org/

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>