Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical mammography sheds new light on breast cancer

27.09.2012
Tufts tests new technology that could aid in breast cancer diagnosis & treatment

New optical imaging technology developed at Tufts University School of Engineering could give doctors new ways to both identify breast cancer and monitor individual patients' response to initial treatment of the disease. A five-year clinical study of the procedure, funded by a $3.5 million grant from the National Institutes of Health, is now underway at Tufts Medical Center in Boston.


Shown is an optical mammography image of hemoglobin oxygenation of a duct carcinoma in situ (DCIS), a breast cancer in the lining of the milk ducts that has not yet invaded nearby tissues. In this image, the boxed area corresponds to the cancer location and indicates lower values of hemoglobin oxygenation. For cancerous tissue that is associated with abnormal hemoglobin concentration and oxygenation, optical mammography can be used to help diagnose breast cancer and also indicate how well a patient responds to breast cancer chemotherapy.

Credit: Sergio Fantini, Ph.D., professor of biomedical engineering at Tufts University

The non-invasive technology uses near infrared (NIR) light to scan breast tissue, and then applies an algorithm to interpret that information. Differences in light absorption allow identification of water, fats, and oxygen-rich and oxygen-poor tissue, the primary structures in breast tissue.

"The consensus is that x-ray mammography is very good at detecting lesions but it's not as good at determining which suspicious lesions are really cancer," says Professor of Biomedical Engineering Sergio Fantini, Ph.D., who is leading the research effort. The Tufts NIR technique could complement standard mammography, particularly for women younger than 40 who may have dense breast tissue that tends to obscure detail in x-rays.

Because it does not use ionizing radiation, the NIR technique can be applied multiple times over a short period without risk of radiation exposure, Fantini notes. Another advantage of the technology is that, unlike other breast imaging methods, it can obtain functional real-time images of metabolic changes, such as levels of hemoglobin concentration and oxygenation.

"It's been reported that patients who respond to breast cancer chemotherapy show a decrease in hemoglobin and water concentration and an increase in lipid concentration at the cancer site," explains Fantini. "This suggests that NIR imaging can be valuable not only in diagnosing breast cancer but in monitoring individual response to therapies without requiring repeated x-rays. For example, it could help determine if a patient is responding to neoadjuvant chemotherapy administered to shrink a tumor before surgery."

Optical mammography is also more comfortable than traditional mammograms. The patient's breasts are only lightly compressed between two horizontal glass panels and then illuminated by NIR light. A specialized software program displays real-time images of the breast as the optical system scans back and forth. A light detector within the system displays the intensity of the NIR beam as it is transmitted through the breast.

By using an algorithm based on the optical information, the technology generates breast images using the intensity of the transmitted light. The images are displayed automatically and can be read soon after the procedure, as is the case with x-ray mammograms. The technology can be packaged into compact, portable and handheld devices.

Clinical Testing

In collaboration with Roger Graham, M.D., director of Tufts Medical Center's Breast Health Center, and Marc Homer, M.D., chief of mammography at Tufts Medical Center, Fantini and his team conducted "proof of concept" tests to see if their procedure could corroborate information gathered with x-rays on two patients who each had suspicious lesions in one of their breasts.

The optical imaging was successful in enabling the team to identify cancerous tissue. "The test results were compatible with what we found in the x-ray mammography," Graham explains. "It was also painless for the patients and eliminated radiation exposure."

The team also includes Eric Miller, Ph.D., professor and chair of electrical and computer engineering and Misha Kilmer, Ph.D., professor of mathematics within the School of Arts and Sciences.

The NIH-funded study will investigate healthy women, women with breast cancer and women with benign breast lesions in an effort to examine the effectiveness of optical mammography in detecting breast cancer and distinguishing between malignant and benign tumors. The study will also look at breast cancer patients who are undergoing chemotherapy in order to characterize the power of optical mammography to determine patient response at the beginning of therapeutic treatment.

Fantini and his colleagues have published numerous papers on optical mammography: http://ase.tufts.edu/biomedical/research/fantini/publications/opticalMammography.asp.

This research is listed under award number 5R01CA154774-02

About Tufts University School of Engineering

Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering's mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

About Tufts Medical Center and Floating Hospital for Children Tufts Medical Center is an exceptional, not-for-profit, 415-bed academic medical center that is home to both a full-service hospital for adults and Floating Hospital for Children. Conveniently located in downtown Boston, the Medical Center is the principal teaching hospital for Tufts University School of Medicine. Floating Hospital for Children is the full-service children's hospital of Tufts Medical Center and the principal pediatric teaching hospital of Tufts University School of Medicine. Tufts Medical Center is affiliated with seven community hospitals and with New England Quality Care Alliance, its community physicians' network.

Alex Reid | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>