Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers able to determine brain maturity through analyzing MRI scans

14.09.2010
Using MRI technology and mathematical analysis, researchers at Oregon Health & Science University and Washington University in St. Louis are now able to accurately predict a young person's age simply by studying their brain scans. The research, which will likely have several clinical applications, including assessment and diagnosis, is published in the current edition of the journal Science.

For several years, OHSU researcher Damien Fair, Ph.D., and his colleagues at Washington University, Nico Dosenbach, M.D., Ph.D., and Bradley Schlaggar, M.D., Ph.D., have been studying development of the brain using a technology called functional MRI. Traditional functional MRI allows for brain images to be taken while a person is performing an activity. However, in this instance, the scientists use the method to examine the brain is idle or at rest.

Previously, Fair used this information to demonstrate how brains develop throughout life. In short, when we are young, brain activity is more localized in the brain. However, as we develop, these connections in the brain become more complex and distributed — much like the way a city's transportation system becomes bigger and more complex as the city grows.

"By utilizing this approach along with complex mathematical analysis, called machine learning, we found that we could create a form of brain development yardstick, or what Dr. Dosenbach calls a maturation index," said Fair, a postdoctoral research scientist in psychiatry, OHSU School of Medicine. "Using this yardstick of sorts, we learned that you could effectively determine the subjects level of brain development."

The researchers hope that, upon further development, the technology will assist in comparing brain function across populations to assess childhood development during the aging process. For instance, a percentile scale could be developed to gauge brain development much in the way weight and height percentiles are calculated for growing children. Such a tool could highlight individual needs and lead to specific ways of helping individual children.

In the future, this form of analysis may also play a key role in diagnosing childhood developmental delay, ADHD and autism.

"In many cases it can be vey hard to diagnose and properly characterize these problems, which is why we are so encouraged by these findings," added Fair.

The research was supported by the National Institutes of Health, John Merck Scholars Fund, Burroughs-Wellcome Fund, Dana Foundation, Ogle Family Fund, McDonnell Center, Simons Foundation, American Hearing Research Foundation, and the Diabetes Research Center at Washington University.

About OHSU

Oregon Health & Science University is the state's only health and research university, and Oregon's only academic health center. OHSU is Portland's largest employer and the fourth largest in Oregon (excluding government). OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. It serves patients from every corner of the state, and is a conduit for learning for more than 3,400 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to every county in the state.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

Further reports about: MRI OHSU Science TV functional MRI health services

More articles from Medical Engineering:

nachricht Novel chip-based gene expression tool analyzes RNA quickly and accurately
18.01.2018 | University of Illinois College of Engineering

nachricht Potentially life-saving health monitor technology designed by Sussex University physicists
10.01.2018 | University of Sussex

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>