Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers able to determine brain maturity through analyzing MRI scans

14.09.2010
Using MRI technology and mathematical analysis, researchers at Oregon Health & Science University and Washington University in St. Louis are now able to accurately predict a young person's age simply by studying their brain scans. The research, which will likely have several clinical applications, including assessment and diagnosis, is published in the current edition of the journal Science.

For several years, OHSU researcher Damien Fair, Ph.D., and his colleagues at Washington University, Nico Dosenbach, M.D., Ph.D., and Bradley Schlaggar, M.D., Ph.D., have been studying development of the brain using a technology called functional MRI. Traditional functional MRI allows for brain images to be taken while a person is performing an activity. However, in this instance, the scientists use the method to examine the brain is idle or at rest.

Previously, Fair used this information to demonstrate how brains develop throughout life. In short, when we are young, brain activity is more localized in the brain. However, as we develop, these connections in the brain become more complex and distributed — much like the way a city's transportation system becomes bigger and more complex as the city grows.

"By utilizing this approach along with complex mathematical analysis, called machine learning, we found that we could create a form of brain development yardstick, or what Dr. Dosenbach calls a maturation index," said Fair, a postdoctoral research scientist in psychiatry, OHSU School of Medicine. "Using this yardstick of sorts, we learned that you could effectively determine the subjects level of brain development."

The researchers hope that, upon further development, the technology will assist in comparing brain function across populations to assess childhood development during the aging process. For instance, a percentile scale could be developed to gauge brain development much in the way weight and height percentiles are calculated for growing children. Such a tool could highlight individual needs and lead to specific ways of helping individual children.

In the future, this form of analysis may also play a key role in diagnosing childhood developmental delay, ADHD and autism.

"In many cases it can be vey hard to diagnose and properly characterize these problems, which is why we are so encouraged by these findings," added Fair.

The research was supported by the National Institutes of Health, John Merck Scholars Fund, Burroughs-Wellcome Fund, Dana Foundation, Ogle Family Fund, McDonnell Center, Simons Foundation, American Hearing Research Foundation, and the Diabetes Research Center at Washington University.

About OHSU

Oregon Health & Science University is the state's only health and research university, and Oregon's only academic health center. OHSU is Portland's largest employer and the fourth largest in Oregon (excluding government). OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. It serves patients from every corner of the state, and is a conduit for learning for more than 3,400 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to every county in the state.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

Further reports about: MRI OHSU Science TV functional MRI health services

More articles from Medical Engineering:

nachricht An LED-based device for imaging radiation induced skin damage
30.03.2017 | The Optical Society

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>