Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers able to determine brain maturity through analyzing MRI scans

14.09.2010
Using MRI technology and mathematical analysis, researchers at Oregon Health & Science University and Washington University in St. Louis are now able to accurately predict a young person's age simply by studying their brain scans. The research, which will likely have several clinical applications, including assessment and diagnosis, is published in the current edition of the journal Science.

For several years, OHSU researcher Damien Fair, Ph.D., and his colleagues at Washington University, Nico Dosenbach, M.D., Ph.D., and Bradley Schlaggar, M.D., Ph.D., have been studying development of the brain using a technology called functional MRI. Traditional functional MRI allows for brain images to be taken while a person is performing an activity. However, in this instance, the scientists use the method to examine the brain is idle or at rest.

Previously, Fair used this information to demonstrate how brains develop throughout life. In short, when we are young, brain activity is more localized in the brain. However, as we develop, these connections in the brain become more complex and distributed — much like the way a city's transportation system becomes bigger and more complex as the city grows.

"By utilizing this approach along with complex mathematical analysis, called machine learning, we found that we could create a form of brain development yardstick, or what Dr. Dosenbach calls a maturation index," said Fair, a postdoctoral research scientist in psychiatry, OHSU School of Medicine. "Using this yardstick of sorts, we learned that you could effectively determine the subjects level of brain development."

The researchers hope that, upon further development, the technology will assist in comparing brain function across populations to assess childhood development during the aging process. For instance, a percentile scale could be developed to gauge brain development much in the way weight and height percentiles are calculated for growing children. Such a tool could highlight individual needs and lead to specific ways of helping individual children.

In the future, this form of analysis may also play a key role in diagnosing childhood developmental delay, ADHD and autism.

"In many cases it can be vey hard to diagnose and properly characterize these problems, which is why we are so encouraged by these findings," added Fair.

The research was supported by the National Institutes of Health, John Merck Scholars Fund, Burroughs-Wellcome Fund, Dana Foundation, Ogle Family Fund, McDonnell Center, Simons Foundation, American Hearing Research Foundation, and the Diabetes Research Center at Washington University.

About OHSU

Oregon Health & Science University is the state's only health and research university, and Oregon's only academic health center. OHSU is Portland's largest employer and the fourth largest in Oregon (excluding government). OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. It serves patients from every corner of the state, and is a conduit for learning for more than 3,400 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to every county in the state.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

Further reports about: MRI OHSU Science TV functional MRI health services

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>