Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


OHSU fixes complex heart problems without open-heart surgery

Oregon Health & Science University is one of a few centers in the nation qualified to use the first FDA-approved pulmonary heart valve that can be implanted through the leg

The pediatric cardiac team at Oregon Health & Science University Doernbecher Children's Hospital is the first in the region and one of a handful in the nation to implant a pulmonary heart valve without open-heart surgery.

To date, four patients have received the landmark valve in the OHSU Pediatric and Adult Congenital Cardiac Catheterization Lab. All reported immediate improvement in their energy level and stamina.

The device, called the Medtronic Melody® Transcatheter Pulmonary Valve, recently was approved by the Food and Drug Administration. The valve is used to replace a narrow or leaky pulmonary valve "conduit" — a tube connecting the heart to the lungs — in children and adults who previously have undergone surgery to correct a congenital heart defect. Until now, pulmonary valve replacements have required open-heart surgery.

The Melody valve is inserted into a tiny opening in the leg and guided by a catheter through blood vessels into the heart. Once the valve is correctly positioned, a balloon on the end of the catheter is inflated, delivering the valve and immediately correcting blood flow.

"Children born with blocked or leaky heart valves can undergo as many as four open-heart surgeries before reaching adulthood to replace conduits that have worn out or that they've outgrown, and each time the risk of surgery goes up," said Grant Burch, M.D., director of the OHSU Pediatric and Adult Congenital Cardiac Catheterization Lab and associate professor of pediatric cardiology at OHSU Doernbecher Children's Hospital. "The Melody extends the useful life of an implanted valve conduit and is very likely to reduce the number of open-heart operations a patient might require over a lifetime."

"This device is not going to abolish the need for open-heart surgery, but it does provide a safe and effective alternative to surgery for many children and young adults with congenital heart disease," explained Burch.

"The remarkable thing about this procedure is that the valve is placed into the beating heart through a vein in the patient's leg. After the procedure, patients spend a night on the hospital ward and are discharged home the following morning," said Laurie Armsby, M.D., associate professor of pediatric cardiology at OHSU Doernbecher and Burch's partner in the OHSU Pediatric and Adult Congenital Cardiac Catheterization Lab. "This device brings us closer to the goal of providing children less invasive alternatives to surgery for the treatment of congenital heart disease."

More than 1,700 patients have been implanted worldwide since the valve was approved for commercial use in Europe in 2006. According to the FDA, an estimated 1,000 U.S. children and adults with congenital heart disease will qualify for the new valve annually.

Drs. Burch and Armsby are the only pediatric cardiologists in Oregon with advanced training in interventional cardiology. Together they perform more than 300 cardiac catheterizations in newborns, children, and adults with congenital heart disease each year.

The FDA approved the Melody valve under the Humanitarian Device Exemption provision, which allows for the use of devices determined to be safe and whose benefits to health outweigh the risk of injury or illness. A Humanitarian Use Device (HUD) is intended to benefit patients by treating or diagnosing a disease or condition that affects or is manifested in fewer than 4,000 individuals in the United States per year. The exemption is only given when there are no comparable devices available to treat or diagnose the disease or condition.


The Pediatric and Adult Congenital Cardiac Catheterization Lab is one of eight premier cardiac catheterization laboratories in the United States participating in the Congenital Cardiac Catheterization Outcomes Project. This project is supported by the National Institute of Health with a goal to develop methods to assess outcomes, provide performance information, understand the efficacy and safety of case types and ultimately to use the information to improve the quality of care delivered in cath labs throughout the country.


OHSU Doernbecher Children's Hospital is a world-class facility that each year cares for more than 165,000 children from Oregon, southwest Washington and around the nation, including national and international referrals for specialty care. Children have access to a full range of pediatric care, not just treatments for serious illness or injury. Nationally recognized physicians ensure that children receive exceptional care, including outstanding cancer treatment, specialized neurology care and highly sophisticated heart surgery in the most patient- and family-centered environment. Pediatric experts from OHSU Doernbecher also travel throughout Oregon and southwest Washington to provide specialty care to some 3,000 children at more than 154 outreach clinics in 13 locations


Medtronic, Inc. headquartered in Minneapolis, is the global leader in medical technology – alleviating pain, restoring health, and extending life for millions of people around the world.

Tamara Hargens-Bradley | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>