Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU Langone offers vascular-targeted photodynamic therapy for localized prostate cancer

28.07.2010
NYU Langone Medical Center has begun a clinical trial offering vascular-targeted photodynamic therapy to patients with localized prostate cancer. This novel, minimally invasive procedure uses a light-activated drug to deliver light energy waves by way of laser fibers in order to destroy prostate cancer cells.

"This minimally invasive technique for localized prostate cancer offers the potential to destroy the cancer without making any incision or causing any potentially devastating sexual, urinary or reproductive side-effects," said Samir S. Taneja, MD, The James M. Neissa and Janet Riha Neissa Associate Professor of Urologic Oncology and director of the Division of Urologic Oncology at NYU Langone Medical Center and principal investigator for the national, multi-center clinical trial testing this technology. "This procedure only treats the cancerous part of the prostate gland, similar to how a lumpectomy might be done for breast cancer.

Photodynamic therapy is just one of the many personalized treatment options offered by the Smilow Comprehensive Prostate Cancer Center at NYU Langone Medical Center. The Center offers a wide range of the latest treatment options for prostate cancer including: open or robotic prostatectomy surgery, brachytherapy, external beam radiation therapy, cryotherapy and high-intensity focused ultrasound (HIFU), a focal therapy that uses high-energy sound waves to treat prostate cancer, now also in clinical trials at the medical center.

This Phase I/II photodynamic therapy trial is open to men diagnosed with localized prostate cancer -- determined by a needle biopsy and advanced imaging techniques -- who have chosen active surveillance, also known as "watchful-waiting. During the procedure, laser fibers are positioned over the prostate where cancer cells have been identified. Once in place, a photosensitizing drug called WST11 is administered to the patient intravenously and circulates throughout the blood stream for ten-minutes. The laser fibers are then activated to deliver a specific wavelength of light to the prostate for twenty-minutes. When the light comes into contact with the drug in circulation, the laser fibers destroy the blood vessels around the tumor shutting down the blood supply to the cancer. Patients are followed for a year after treatment with PSA tests after each visit and an MRI and needle biopsy performed at six months.

"Focal treatment of prostate cancer with techniques such as photodynamic therapy is an emerging paradigm since the over treatment of prostate cancer is a major concern for both physicians and patients," said Dr. Taneja who is also a member of the NYU Cancer Institute.

Recent European studies show photodynamic therapy successfully treats localized prostate cancer with minimal side effects. This study will investigate optimal dosage of the photosensitive drug and light-energy waves and measure outcomes of patients as well as long-term cancer control. Researchers believe the technology has the potential to treat any early stage prostate cancer as well as tumors in other organs of the body.

About NYU Langone Medical Center

NYU Langone Medical Center is one of the nation's premier centers of excellence in healthcare, biomedical research, and medical education. For over 170 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; and the NYU Hospitals Center, including Tisch Hospital, a 705-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care, a Clinical Cancer Center and numerous ambulatory sites.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>