Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU Langone offers vascular-targeted photodynamic therapy for localized prostate cancer

28.07.2010
NYU Langone Medical Center has begun a clinical trial offering vascular-targeted photodynamic therapy to patients with localized prostate cancer. This novel, minimally invasive procedure uses a light-activated drug to deliver light energy waves by way of laser fibers in order to destroy prostate cancer cells.

"This minimally invasive technique for localized prostate cancer offers the potential to destroy the cancer without making any incision or causing any potentially devastating sexual, urinary or reproductive side-effects," said Samir S. Taneja, MD, The James M. Neissa and Janet Riha Neissa Associate Professor of Urologic Oncology and director of the Division of Urologic Oncology at NYU Langone Medical Center and principal investigator for the national, multi-center clinical trial testing this technology. "This procedure only treats the cancerous part of the prostate gland, similar to how a lumpectomy might be done for breast cancer.

Photodynamic therapy is just one of the many personalized treatment options offered by the Smilow Comprehensive Prostate Cancer Center at NYU Langone Medical Center. The Center offers a wide range of the latest treatment options for prostate cancer including: open or robotic prostatectomy surgery, brachytherapy, external beam radiation therapy, cryotherapy and high-intensity focused ultrasound (HIFU), a focal therapy that uses high-energy sound waves to treat prostate cancer, now also in clinical trials at the medical center.

This Phase I/II photodynamic therapy trial is open to men diagnosed with localized prostate cancer -- determined by a needle biopsy and advanced imaging techniques -- who have chosen active surveillance, also known as "watchful-waiting. During the procedure, laser fibers are positioned over the prostate where cancer cells have been identified. Once in place, a photosensitizing drug called WST11 is administered to the patient intravenously and circulates throughout the blood stream for ten-minutes. The laser fibers are then activated to deliver a specific wavelength of light to the prostate for twenty-minutes. When the light comes into contact with the drug in circulation, the laser fibers destroy the blood vessels around the tumor shutting down the blood supply to the cancer. Patients are followed for a year after treatment with PSA tests after each visit and an MRI and needle biopsy performed at six months.

"Focal treatment of prostate cancer with techniques such as photodynamic therapy is an emerging paradigm since the over treatment of prostate cancer is a major concern for both physicians and patients," said Dr. Taneja who is also a member of the NYU Cancer Institute.

Recent European studies show photodynamic therapy successfully treats localized prostate cancer with minimal side effects. This study will investigate optimal dosage of the photosensitive drug and light-energy waves and measure outcomes of patients as well as long-term cancer control. Researchers believe the technology has the potential to treat any early stage prostate cancer as well as tumors in other organs of the body.

About NYU Langone Medical Center

NYU Langone Medical Center is one of the nation's premier centers of excellence in healthcare, biomedical research, and medical education. For over 170 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; and the NYU Hospitals Center, including Tisch Hospital, a 705-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care, a Clinical Cancer Center and numerous ambulatory sites.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>