Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU Langone experts find MRI techniques can detect early osteoarthritis

16.08.2011
Researchers from NYU Langone Medical Center's Departments of Orthopaedic Surgery and Radiology found that advanced MRI techniques can be used to detect subtle changes in joint cartilage microstructure – and provide physicians a diagnostic tool for finding key markers of early osteoarthritis (OA).

By using these techniques during patient exams to identify OA earlier, clinicians can shift the management of the disease from eventual joint reconstruction to long-term preservation. The study was published in the July issue of the Journal of the American Academy of Orthopaedic Surgeons.

"Imaging technology is now sensitive and powerful enough to enable detection of subtle changes in the intricate balance of water, chondrocytes and the collagen fibers and protein molecules that make up our joint cartilage – which we now know can point to future osteoarthritis," says Laith Jazrawi, MD, associate professor of orthopaedic surgery and lead author of the paper. "With an active and aging baby boomer population beginning to experience joint pain associated with age, we think there is great potential for bringing these imaging techniques from the lab to the benefit of patients."

The clinical practice standard is to use conventional MRI imaging to assess the quality of cartilage in patients with joint pain, or known arthritis, which focuses on the morphological integrity of the cartilage. In the lab, however, radiologists, orthopedic surgeons, and rheumatologists working as a team have used advances in MRI technology and biochemical imaging techniques to assess cartilage damaged by osteoarthritis. Damaged cartilage shows distinct changes in the concentration of water and collagen molecules, the micro- and macrostructure of collagen, and the concentrations of particular proteins, glycosoaminoglycans. The findings support the use of these MRI techniques in the evaluation of younger patients with joint pain to identify the beginnings of OA – allowing for earlier treatment to halt the progression of the disease.

"The development and optimization of these innovative MR techniques has opened up a new window into the understanding and possible treatment of arthritis before irreversible structural and morphological changes has occurred," said Michael P. Recht, MD, Louise Marx professor of radiology and chairman of the Department of Radiology.

The full study can be found at http://www.jaaos.org/cgi/content/full/19/7/420. For more information about NYU Langone Medical Center's orthopaedic and rheumatology research, go to http://orthosurgery.med.nyu.edu/research.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousand of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org.

Craig Andrews | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>