Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nottingham technology in heart development breakthrough

Technology developed at The University of Nottingham has been used in a breakthrough study aimed at developing the first comprehensive model of a fully functioning fetal heart.

The abdominal fetal ECG device, designed originally by academics in the University’s Department of Electrical and Electronic Engineering and on commercial sale throughout the world since 2008 through the University spin-out company Monica Healthcare Ltd, has been used to observe living fetal hearts of babies in their mothers’ wombs.

The collaborative study led by experts at The University of Leeds has discovered that the walls of the human heart are a disorganised jumble of tissue until relatively late in pregnancy — with development much slower compared to other mammals.

Professor Barrie Hayes-Gill, Professor of Electronic Systems and Medical Devices at The University of Nottingham and joint founder and research director at Monica Healthcare said: “It’s absolutely fantastic to see our device being used to detect fetal ECG morphology (i.e. ECG shape) in a non-invasive manner from the surface of the maternal abdomen. In this study the Monica device has been specifically deployed to observe the development of the fetal heart as it goes through gestation.

“It’s an important development and we are delighted to see Nottingham technology playing such an integral part of the study. We expect that non-invasive morphological analysis during pregnancy and labour will become routine clinical practice in years to come as Monica continues to gain traction in the marketplace.”

The fetal heart monitor is a portable, non-invasive device which attaches to the mother’s abdomen and measures the electrical activity from the heart of the baby inside her womb. It is currently being used worldwide to monitor fetal heart rates during labour and delivery.

The device uses complex algorithms to correctly identify signals related to the fetal heart rate (FHR) using sensitive ECG-style electrodes. This method of using electrophysiological signals differs from current external monitoring devices that collect FHR and uterine activity data based on physical changes (e.g. change in reflected sound waves and changes on strain gauge) that may cause problems in data interpretation.

The monitor is simple to use, beltless, requires no wires to connect to the display or printer. There is also no need for the constant re-positioning of transducers, which is required with older technology and the mother is free to walk around if necessary.

As part of their study, which has been published in the Journal of the Royal Society Interface Focus, the team from the University of Leeds used the device to administer a weekly fetal ECG recording from 18 weeks until just before delivery.

The data from this, alongside two different MRI scans from the hearts of dead fetuses, was incorporated into a 3D computerised model built up using information about the structure, shape and size of the different components of the heart.

Early results suggest that the human heart may develop on a different timeline from other mammals. While the tissue in the walls of a pig heart develops a highly organised structure at a relatively early stage of a fetus’ development, their work suggests there is little organisation in the human heart’s cells until 20 weeks into pregnancy. Despite this, the human heart has a regular heartbeat from about 22 days.

Developing an accurate, computerised simulation of the fetal heart is critical to understanding normal heart developments in the womb and, eventually, to opening new ways of detecting and dealing with some functional abnormalities early in pregnancy.

Dr Eleftheria Pervolaraki, lead researcher on the project at the University of Leeds’ School of Biomedical Sciences, said: “For a heart to be beating effectively, we thought you needed a smoothly changing orientation of the muscle cells through the walls of the heart chambers. Such an organisation is seen in the hearts of all healthy adult mammals.

“Fetal hearts in other mammals such as pigs, which we have been using as models, show such an organisation even early in gestation, with a smooth change in cell orientation going through the heart wall. But what we actually found is that such organisation was not detectable in the human fetus before 20 weeks,” she said.

Professor Arun Holden, from The University of Leeds’ School of Biomedical Sciences, said: “The development of the fetal human heart is on a totally different timeline, a slower timeline, from the model that was being used before. This upsets our assumptions and raises new questions. Since the wall of the heart is structurally disorganised, we might expect to find arrhythmias, which are a bad sign in an adult. It may well be that in the early stages of development of the heart arrhythmias are not necessarily pathological and that there is no need to panic if we find them. Alternatively, we could find that the disorganisation in the tissue does not actually lead to arrhythmia.”

A detailed computer model of the activity and architecture of the developing heart will help make sense of the limited information doctors can obtain about the fetus using non-invasive monitoring of a pregnant woman.

Professor Holden said: “It is different from dealing with an adult, where you can look at the geometry of an individual’s heart using MRI (Magnetic Resonance Imaging) or CT (Computerised Tomography) scans. You can’t squirt x-rays at a fetus and we also currently tend to avoid MRI, so we need a model into which we can put the information we do have access to.”

He added: “Effectively, at the moment, fetal ECGs are not really used. The textbooks descriptions of the development of the human heart are still founded on animal models and 19th century collections of abnormalities in museums. If you are trying to detect abnormal activity in fetal hearts, you are only talking about third trimester and postnatal care of premature babies. By looking at how the human heart actually develops in real life and creating a quantitative, descriptive model of its architecture and activity from the start of a pregnancy to birth, you are expanding electrocardiology into the fetus.”

For up to the minute media alerts, follow us on Twitter or find out more on our Press Office blog

Notes to editors: The University of Nottinghamhas 42,000 students at award-winning campuses in the United Kingdom, China and Malaysia. It was ‘one of the first to embrace a truly international approach to higher education’, according to the Sunday Times University Guide 2013. It is also one of the most popular universities among graduate employers, one of the world’s greenest universities, and winner of the Times Higher Education Award for ‘Outstanding Contribution to Sustainable Development’. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong and the QS World Rankings.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise. The University aims to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen’s Anniversary Prize for Higher and Further Education for its research into global food security.

Emma Thorne - Media Relations Manager
Phone: +44 (0)115 951 5793
Location: University Park

Emma Thorne | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Infrared thermography can detect joint inflammation and help improving work ergonomics
02.10.2015 | University of Eastern Finland

nachricht MRI technique could reduce need for breast biopsies
29.09.2015 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Im Focus: 3-D printing techniques help surgeons carve new ears

When surgical residents need to practice a complicated procedure to fashion a new ear for children without one, they typically get a bar of soap, carrot or an apple.

To treat children with a missing or under-developed ear, experienced surgeons harvest pieces of rib cartilage from the child and carve them into the framework...

Im Focus: Walk the line

NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Infrared thermography can detect joint inflammation and help improving work ergonomics

02.10.2015 | Medical Engineering

Semiconductor nanoparticles show high luminescence in a polymer matrix

02.10.2015 | Materials Sciences

New Sinumerik features improve productivity and precision

02.10.2015 | Trade Fair News

More VideoLinks >>>