Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern Medicine uses new minimally invasive technique for melanoma

27.08.2013
At first, Krista Easom figured the little red bump on her foot was nothing more than a blister.

It didn't hurt, but after a couple months, it didn't go away either.

She booked an appointment with a dermatologist to have it removed. She wasn't worried. Easom, a 24-year-old law school student from New Jersey, was healthy, had no family history of cancer and was getting ready to enjoy some time in her newly adopted city of Chicago.

That's when she received the results from her dermatologist, who removed a part of the blister and had it tested.

It turns out that little red bump was malignant melanoma, the leading cause of skin cancer death in the United States. It's a cancer that kills one person every hour, which translates to more than 8,700 Americans each year.

Further tests revealed that Easom's melanoma had spread to her lymph nodes, which meant she needed a lymphadenectomy to have them removed. This major surgery includes a five-day stay in the hospital followed by an extensive recovery. About half of the patients who undergo this procedure suffer from wound infections because of the 12-inch incision's hip-to-thigh location.

Easom and her family looked into her options and she was referred to Northwestern Medicine® surgical oncologists Jeffery D. Wayne, MD and Karl Bilimoria, MD, two of the very few surgeons in the country using a minimally invasive procedure to remove groin lymph nodes. This laparoscopic procedure may drastically reduce the recovery rate and chance of infection for patients like Easom.

"Only a handful of surgeons in the country are doing this and it makes a world of difference to the patient," said Bilimoria, a surgical oncologist at Northwestern Memorial Hospital and an assistant professor of surgery at Northwestern University Feinberg School of Medicine. "Instead of a 12-inch scar, this laparoscopic procedure has only three very small incisions that total less than one inch. Because these incisions are so small, the chance of infection is far less. Instead of a five-day stay in the hospital, Krista went home the day after her surgery."

Lymph nodes are the most frequent site of the spread of metastatic melanoma and surgically removing them is the only potential for a cure, Wayne said.

"Surgery is the only way to make sure we get all of the cancer," Wayne said. "We want Krista to move on with her life. The minimally-invasive procedure was by far, the quickest and safest way for her to do that."

Just a few weeks post-surgery, Easom is already on her way. She will have regular check-ups for awhile but her CT scans and blood tests show that the surgery successfully removed all of her cancer. Easom is participating in a national clinical trial to see if this minimally invasive procedure can help other melanoma patients.

"I had this major surgery and didn't take any time off from school or my internship," Easom said. "The incisions were so small, I couldn't even see them. They are monitoring my leg to make sure the swelling goes down, but I'm getting better and better each day."

Bilimoria and Wayne are both members of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. To learn more about the Lurie Cancer Center, visit its website.

The American Cancer Society recommends professional skin examinations every year for people older than 40, and every three years for people ages 20 to 40. The best way to prevent skin cancer is to reduce your exposure to sunlight. Ultraviolet light is most intense between 10 a.m. and 4 p.m.

Northwestern Medicine is the shared vision that joins Northwestern Memorial HealthCare and Northwestern University Feinberg School of Medicine in a collaborative effort to transform medicine through quality healthcare, academic excellence and scientific discovery.

To learn more about cancer care at Northwestern Memorial Hospital, or to find a physician, visit the oncology website or call 312-926-0779.

Sheila Galloro | EurekAlert!
Further information:
http://www.nmh.org

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>