Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noninvasive imaging technique may help kids with heart transplants

13.07.2012
Cardiologists at Washington University School of Medicine in St. Louis have developed a noninvasive imaging technique that may help determine whether children who have had heart transplants are showing early signs of rejection. The technique could reduce the need for these patients to undergo invasive imaging tests every one to two years.

The new method is described online in the Journal of Heart and Lung Transplantation.

The invasive imaging test, a coronary angiogram, involves inserting a catheter into a blood vessel and injecting a dye to look for dangerous plaque on the walls of arteries feeding blood to the heart. This plaque build-up indicates coronary artery disease and is a sign that the body may be rejecting the new heart. Since pediatric heart transplant patients are at high risk of developing coronary artery disease, doctors monitor their arteries on a regular basis. But recurring angiograms become problematic.

“Many of these children have undergone so many operations, we have lost access to their big blood vessels,” says Charles E. Canter, MD, professor of pediatrics. “Sometimes it’s impossible to do catheterization procedures on them.”

Based on experience imaging other types of inflammation in arteries, senior author Samuel A. Wickline, MD, professor of medicine, and his colleagues, including Canter and medical student Mohammad H. Madani, a Doris Duke Clinical Research Fellow, examined whether they could assess coronary artery disease in these children using magnetic resonance imaging (MRI). In this case, the MRI was enhanced with a commonly used contrast agent called gadolinium that is injected into the arteries. Gadolinium is not radioactive and makes areas of inflamed arteries and heart muscle show up brighter on an MRI.

“The brighter it is, the more it is associated with coronary artery disease,” Canter says.

The study included 29 heart transplant patients and eight healthy children who served as controls. The transplant patients underwent standard coronary angiograms as part of their normal care. They also had MRIs of the coronary arteries to examine whether the noninvasive method correlated with the degree of coronary artery disease found in the angiograms. The eight children who served as controls only had MRI scans. The researchers assessing the MRI results were blinded to the results of the transplants patients’ angiograms.

While all of the transplant patients’ angiograms showed evidence of plaque build-up, in only six of them was it severe enough for a diagnosis of coronary artery disease.

These six patients had the brightest coronary arteries on the MRI scans, compared to both the transplant patients without coronary disease and the healthy controls. Still, the 23 transplant patients without diagnosed coronary disease had significantly brighter arteries than the healthy participants. Such evidence demonstrates the need to continue monitoring these patients.

Although the brightness of the arteries on MRI correlated well with a diagnosis of coronary artery disease, gadolinium can be toxic to the kidney, Canter points out. This means the technique can’t be used for patients with poor kidney function. Furthermore, clear images with MRI are difficult in very young children because of their high heart rates. In this study, no participant was younger than age 10. Nevertheless, Canter sees a possible future place for this technique in helping to monitor the progress of coronary artery disease in transplant patients.

“The results of this pilot study were very promising,” Canter says. “But we need to look at more patients. We’re in the process of developing a bigger study to confirm and refine the results. I think eventually this could be used as a screening technique, not so much to eliminate, but to reduce the number of angiograms.”

Madani MH, Canter CE, Balzer DT, Watkins MP, Wickline SA. Noninvasive detection of transplant coronary artery disease with contrast-enhanced cardiac MRI in pediatric cardiac transplants. Journal of Heart and Lung Transplantation. Online July 2, 2012.

This work was supported by the Children’s Discovery Institute, St. Louis Children’s Hospital, Washington University School of Medicine in St. Louis and a Doris Duke Clinical Research Fellowship.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Medical Engineering:

nachricht Heart examinations: Miniature particle accelerator saves on contrast agents
27.02.2017 | Technische Universität München

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>