Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technology for examining cardiovascular blood vessels


For the examination of coronary blood vessels, intravascular methods with imaging technologies are already state-of-the-art. However, ultrasonic methods, which are used to gather information about the tissue, can only be used externally, up to now. The piezo electronical components necessary for this have not been sufficiently miniaturized to be inserted into the blood vessels.

The Laser Zentrum Hannover e.V. (LZH) and the Technion – Israel Institute of Technology would like to change this. This group of researchers are thus working on an opto-acoustical sensor for medical ultrasonic technology.

The opto-acoustical sensor consists of an ultrasonics generating lighting fiber, an acoustical lens, and an ultrasonic detector element.

Photo: LZH

For reliable cardiological diagnostics, intravascular examinations are indispensable. This minimal invasive surgical interventions insert optical sensors directly into the coronary blood vessels and enable a more detailed image of the vessel than could be made using external investigation methods.

Opto-acoustical sensor for detailed images

Now, the scientists want to combine intravascular diagnostics with ultrasonic technology. However, the piezo electronical components necessary for this have not yet been sufficiently miniaturized. For this reason, the new technology is based on optical interferometry:

The intravascular module should be equipped with an opto-acoustical imaging sensor which can provide an internal image of the tissue of the coronary blood vessels up to a depth of 1 mm. To achieve this, a guided laser impulse from an illuminating fiber is first absorbed by the blood vessel tissue. The resulting ultrasonics are then guided to a fiber-based ultrasonic detector via an acoustical lens.

By transforming this signal into an optical signal, a complete image of the vascular walls can be made. An optical interferometer recognizes deviations in the reflection pattern, making the detection of abnormal or disease-based changes in the tissue possible.

The diagnosis of diseases and disorders, for example arteriosclerosis, will be much simpler since this sensor should have a significantly higher sensitivity and resolution, in comparison to present methods. Also, the use in other areas is being considered. Optical interferometry should be examined as an alternative to present ultrasonic detections, including the use for technical applications.

Process Engineering from the LZH

The scientists in the Laser Micromachining Group are developing the process engineering necessary for the production of the acoustical lenses. These will be inserted directly into the glass substrate. In order to do so, specific areas of the substrate will be removed first using the laser, and then polished.

Further parts of the intravascular sensor module are, apart from the lens, an ultrasonic detector element, and a lighting fiber for ultrasonic stimulus. The design and the conversion of the signals into an image which can be used for diagnostics is being developed by the scientists at the Technion.

The research project „Integrated silica-based photoacoustic probe for intravascular imaging via laser micro-machining and interferometric sensors“ is being jointly led by Prof. Dr.-Ing. Ludger Overmeyer (LZH) and Ass. Prof. Amir Rosenthal (Technion). It will be supported by the state of Lower Saxony until the beginning 2019 within the course of the funding initiative “Niedersächsisches Vorab”.

Dr. Nadine Tinne | idw - Informationsdienst Wissenschaft
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>