Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology for examining cardiovascular blood vessels

14.04.2016

For the examination of coronary blood vessels, intravascular methods with imaging technologies are already state-of-the-art. However, ultrasonic methods, which are used to gather information about the tissue, can only be used externally, up to now. The piezo electronical components necessary for this have not been sufficiently miniaturized to be inserted into the blood vessels.

The Laser Zentrum Hannover e.V. (LZH) and the Technion – Israel Institute of Technology would like to change this. This group of researchers are thus working on an opto-acoustical sensor for medical ultrasonic technology.


The opto-acoustical sensor consists of an ultrasonics generating lighting fiber, an acoustical lens, and an ultrasonic detector element.

Photo: LZH

For reliable cardiological diagnostics, intravascular examinations are indispensable. This minimal invasive surgical interventions insert optical sensors directly into the coronary blood vessels and enable a more detailed image of the vessel than could be made using external investigation methods.

Opto-acoustical sensor for detailed images

Now, the scientists want to combine intravascular diagnostics with ultrasonic technology. However, the piezo electronical components necessary for this have not yet been sufficiently miniaturized. For this reason, the new technology is based on optical interferometry:

The intravascular module should be equipped with an opto-acoustical imaging sensor which can provide an internal image of the tissue of the coronary blood vessels up to a depth of 1 mm. To achieve this, a guided laser impulse from an illuminating fiber is first absorbed by the blood vessel tissue. The resulting ultrasonics are then guided to a fiber-based ultrasonic detector via an acoustical lens.

By transforming this signal into an optical signal, a complete image of the vascular walls can be made. An optical interferometer recognizes deviations in the reflection pattern, making the detection of abnormal or disease-based changes in the tissue possible.

The diagnosis of diseases and disorders, for example arteriosclerosis, will be much simpler since this sensor should have a significantly higher sensitivity and resolution, in comparison to present methods. Also, the use in other areas is being considered. Optical interferometry should be examined as an alternative to present ultrasonic detections, including the use for technical applications.

Process Engineering from the LZH

The scientists in the Laser Micromachining Group are developing the process engineering necessary for the production of the acoustical lenses. These will be inserted directly into the glass substrate. In order to do so, specific areas of the substrate will be removed first using the laser, and then polished.

Further parts of the intravascular sensor module are, apart from the lens, an ultrasonic detector element, and a lighting fiber for ultrasonic stimulus. The design and the conversion of the signals into an image which can be used for diagnostics is being developed by the scientists at the Technion.

The research project „Integrated silica-based photoacoustic probe for intravascular imaging via laser micro-machining and interferometric sensors“ is being jointly led by Prof. Dr.-Ing. Ludger Overmeyer (LZH) and Ass. Prof. Amir Rosenthal (Technion). It will be supported by the state of Lower Saxony until the beginning 2019 within the course of the funding initiative “Niedersächsisches Vorab”.

Dr. Nadine Tinne | idw - Informationsdienst Wissenschaft
Further information:
http://www.lzh.de/

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>