Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Non-Invasive Technique Controls Size of Molecules Penetrating the Blood-Brain Barrier

18.08.2014

Innovative ultrasound approach uses acoustic pressure to let molecules through—may help treatment for central nervous system diseases like Parkinson’s and Alzheimer’s

A new technique developed by Elisa Konofagou, professor of biomedical engineering and radiology at Columbia Engineering, has demonstrated for the first time that the size of molecules penetrating the blood-brain barrier (BBB) can be controlled using acoustic pressure—the pressure of an ultrasound beam—to let specific molecules through. The study was published in the July issue of the Journal of Cerebral Blood Flow & Metabolism.


Image courtesy of Elisa Konofagou, associate professor of biomedical engineering and radiology, Columbia Engineering

Damage analysis of BBB-opened brain regions: Histological examination of (A, C) left (BBB-opened) and (B, D) corresponding right (no ultrasound) hippocampi. No microscopic tissue damage was observed in the BBB-opened hippocampus at 0.51 MPa (A), same as in the intact right hippocampus on the same section (B). Minor microhemorrhage is noticeable in one location (box) in the hippocampus sonicated at 0.84 MPa (C), compared to no damage in nonsonicated hippocampus (D). The insert shows magnified image of the region in the box. Scale bar represents 1 mm.

“This is an important breakthrough in getting drugs delivered to specific parts of the brain precisely, non-invasively, and safely, and may help in the treatment of central nervous system diseases like Parkinson’s and Alzheimer’s,” says Konofagou, whose National Institutes of Health Research Project Grant (R01) funding was just renewed for another four years for an additional $2.22 million. The award is for research to determine the role of the microbubble in controlling both the efficacy and safety of drug safety through the BBB with a specific application for treating Parkinson’s disease.

Most small—and all large—molecule drugs do not currently penetrate the blood-brain barrier that sits between the vascular bed and the brain tissue. “As a result,” Konofagou explains, “all central nervous system diseases remain undertreated at best. For example, we know that Parkinson’s disease would benefit by delivery of therapeutic molecules to the neurons so as to impede their slow death. But because of the virtually impermeable barrier, these drugs can only reach the brain through direct injection and that requires anesthesia and drilling the skull while also increasing the risk of infection and limiting the number of sites of injection. And transcranial injections rarely work—only about one in ten is successful.”

Focused ultrasound in conjunction with microbubbles—gas-filled bubbles coated by protein or lipid shells—continues to be the only technique that can permeate the BBB safely and non-invasively. When microbubbles are hit by an ultrasound beam, they start oscillating and, depending on the magnitude of the pressure, continue oscillating or collapse. While researchers have found that focused ultrasound in combination with microbubble cavitation can be successfully used in the delivery of therapeutic drugs across the BBB, almost all earlier studies have been limited to one specific-sized agent that is commercially available and widely used clinically as ultrasound contrast agents. Konofagou and her team were convinced there was a way to induce a size-controllable BBB opening, enabling a more effective method to improve localized brain drug delivery.

Konofagou targeted the hippocampus, the memory center of the brain, and administered different-sized sugar molecules (Dextran). She found that higher acoustic pressures led to larger molecules accumulating into the hippocampus as confirmed by fluorescence imaging. This demonstrated that the pressure of the ultrasound beam can be adjusted depending on the size of the drug that needs to be delivered to the brain: all molecules of variant sizes were able to penetrate the opened barrier but at distinct pressures, i.e., small molecules at lower pressures and larger molecules at higher pressures.

“Through this study, we’ve been able to show, for the first time, that we can control the BBB opening size through the use of acoustic pressure,” says Konofagou. “We’ve also learned much more about the physical mechanisms associated with the trans-BBB delivery of different-sized agents, and understanding the BBB mechanisms will help us to develop agent size-specific focused ultrasound treatment protocols.”

Konofagou and her Ultrasound Elasticity Imaging Laboratory team plan to continue to work on the treatment of Alzheimer’s and Parkinson’s in a range of models, and hope to test their technique in clinical trials within the next five years.

“It is frightening to think that in the 21st century we still have no idea now to treat most brain diseases,” Konofagou adds. “But we’re really excited because we now have a tool that could potentially change the current dire predictions that come with a neurological disorder diagnosis.”

Contact Information

Holly Evarts
Director of Strategic Communications and Media Rel
holly.evarts@columbia.edu
Phone: 212-854-3206
Mobile: 347-453-7408

Holly Evarts | newswise

Further reports about: BBB Barrier Blood-Brain Molecules Parkinson’s acoustic diseases drugs pressures

More articles from Medical Engineering:

nachricht Imaging probe yields double insight
05.08.2015 | The Agency for Science, Technology and Research (A*STAR)

nachricht Tiny mechanical wrist gives new dexterity to needlescopic surgery
24.07.2015 | Vanderbilt University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

Im Focus: A Grand Voyage for Tiny Organisms

Climate and Ecosystem Change in the Mediterranean

Since the opening of the Suez Canal in 1869 many hundreds of marine animal and plant species from the Red Sea have invaded the eastern Mediterranean, leading...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Cells cling and spiral 'like vines' in first 3-D tissue scaffold for plants

27.08.2015 | Life Sciences

Hypoallergenic parks: Coming soon?

27.08.2015 | Health and Medicine

Stiffer breast tissue in obese women promotes tumors

27.08.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>