Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Non-Invasive Technique Controls Size of Molecules Penetrating the Blood-Brain Barrier

18.08.2014

Innovative ultrasound approach uses acoustic pressure to let molecules through—may help treatment for central nervous system diseases like Parkinson’s and Alzheimer’s

A new technique developed by Elisa Konofagou, professor of biomedical engineering and radiology at Columbia Engineering, has demonstrated for the first time that the size of molecules penetrating the blood-brain barrier (BBB) can be controlled using acoustic pressure—the pressure of an ultrasound beam—to let specific molecules through. The study was published in the July issue of the Journal of Cerebral Blood Flow & Metabolism.


Image courtesy of Elisa Konofagou, associate professor of biomedical engineering and radiology, Columbia Engineering

Damage analysis of BBB-opened brain regions: Histological examination of (A, C) left (BBB-opened) and (B, D) corresponding right (no ultrasound) hippocampi. No microscopic tissue damage was observed in the BBB-opened hippocampus at 0.51 MPa (A), same as in the intact right hippocampus on the same section (B). Minor microhemorrhage is noticeable in one location (box) in the hippocampus sonicated at 0.84 MPa (C), compared to no damage in nonsonicated hippocampus (D). The insert shows magnified image of the region in the box. Scale bar represents 1 mm.

“This is an important breakthrough in getting drugs delivered to specific parts of the brain precisely, non-invasively, and safely, and may help in the treatment of central nervous system diseases like Parkinson’s and Alzheimer’s,” says Konofagou, whose National Institutes of Health Research Project Grant (R01) funding was just renewed for another four years for an additional $2.22 million. The award is for research to determine the role of the microbubble in controlling both the efficacy and safety of drug safety through the BBB with a specific application for treating Parkinson’s disease.

Most small—and all large—molecule drugs do not currently penetrate the blood-brain barrier that sits between the vascular bed and the brain tissue. “As a result,” Konofagou explains, “all central nervous system diseases remain undertreated at best. For example, we know that Parkinson’s disease would benefit by delivery of therapeutic molecules to the neurons so as to impede their slow death. But because of the virtually impermeable barrier, these drugs can only reach the brain through direct injection and that requires anesthesia and drilling the skull while also increasing the risk of infection and limiting the number of sites of injection. And transcranial injections rarely work—only about one in ten is successful.”

Focused ultrasound in conjunction with microbubbles—gas-filled bubbles coated by protein or lipid shells—continues to be the only technique that can permeate the BBB safely and non-invasively. When microbubbles are hit by an ultrasound beam, they start oscillating and, depending on the magnitude of the pressure, continue oscillating or collapse. While researchers have found that focused ultrasound in combination with microbubble cavitation can be successfully used in the delivery of therapeutic drugs across the BBB, almost all earlier studies have been limited to one specific-sized agent that is commercially available and widely used clinically as ultrasound contrast agents. Konofagou and her team were convinced there was a way to induce a size-controllable BBB opening, enabling a more effective method to improve localized brain drug delivery.

Konofagou targeted the hippocampus, the memory center of the brain, and administered different-sized sugar molecules (Dextran). She found that higher acoustic pressures led to larger molecules accumulating into the hippocampus as confirmed by fluorescence imaging. This demonstrated that the pressure of the ultrasound beam can be adjusted depending on the size of the drug that needs to be delivered to the brain: all molecules of variant sizes were able to penetrate the opened barrier but at distinct pressures, i.e., small molecules at lower pressures and larger molecules at higher pressures.

“Through this study, we’ve been able to show, for the first time, that we can control the BBB opening size through the use of acoustic pressure,” says Konofagou. “We’ve also learned much more about the physical mechanisms associated with the trans-BBB delivery of different-sized agents, and understanding the BBB mechanisms will help us to develop agent size-specific focused ultrasound treatment protocols.”

Konofagou and her Ultrasound Elasticity Imaging Laboratory team plan to continue to work on the treatment of Alzheimer’s and Parkinson’s in a range of models, and hope to test their technique in clinical trials within the next five years.

“It is frightening to think that in the 21st century we still have no idea now to treat most brain diseases,” Konofagou adds. “But we’re really excited because we now have a tool that could potentially change the current dire predictions that come with a neurological disorder diagnosis.”

Contact Information

Holly Evarts
Director of Strategic Communications and Media Rel
holly.evarts@columbia.edu
Phone: 212-854-3206
Mobile: 347-453-7408

Holly Evarts | newswise

Further reports about: BBB Barrier Blood-Brain Molecules Parkinson’s acoustic diseases drugs pressures

More articles from Medical Engineering:

nachricht Innovative device allows 3-D imaging of the breast with less radiation
17.06.2016 | DOE/Thomas Jefferson National Accelerator Facility

nachricht The vascular bypass revolution
13.06.2016 | Université de Genève

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Building a better battery

29.06.2016 | Life Sciences

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>