Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscope technique reveals internal structure of live embryos

08.08.2017

University of Illinois researchers have developed a way to produce 3-D images of live embryos in cattle that could help determine embryo viability before in vitro fertilization in humans.

Infertility can be devastating for those who want children. Many seek treatment, and the cost of a single IVF cycle can be $20,000, making it desirable to succeed in as few attempts as possible. Advanced knowledge regarding the health of embryos could help physicians select those that are most likely to lead to successful pregnancies.


A GLIM image of a rendered cow embryo that was cut through the center to reveal internal structures.

Image courtesy Gabriel Popescu

The new method, published in the journal Nature Communications, brought together electrical and computer engineering professor Gabriel Popescu and animal sciences professor Matthew Wheeler in a collaborative project through the Beckman Institute for Advanced Science and Technology at the U. of I.

Called gradient light interference microscopy, the method solves a challenge that other methods have struggled with -- imaging thick, multicellular samples.

In many forms of traditional biomedical microscopy, light is shined through very thin slices of tissue to produce an image. Other methods use chemical or physical markers that allow the operator to find the specific object they are looking for within a thick sample, but those markers can be toxic to living tissue, Popescu said.

"When looking at thick samples with other methods, your image becomes washed out due to the light bouncing off of all surfaces in the sample," said graduate student Mikhail Kandel, the co-lead author of the study. "It is like looking into a cloud."

GLIM can probe deep into thick samples by controlling the path length over which light travels through the specimen. The technique allows the researchers to produce images from multiple depths that are then composited into a single 3-D image.

To demonstrate the new method, Popescu's group joined forces with Wheeler and his team to examine cow embryos.

"One of the holy grails of embryology is finding a way to determine which embryos are most viable," Wheeler said. "Having a noninvasive way to correlate to embryo viability is key; before GLIM, we were taking more of an educated guess."

Those educated guesses are made by examining factors like the color of fluids inside the embryonic cells and the timing of development, among others, but there is no universal marker for determining embryo health, Wheeler said.

"This method lets us see the whole picture, like a three-dimensional model of the entire embryo at one time," said Tan Nguyen, the other co-lead author of the study.

Choosing the healthiest embryo is not the end of the story, though. "The ultimate test will be to prove that we have picked a healthy embryo and that it has gone on to develop a live calf," said Marcello Rubessa, a postdoctoral researcher and co-author of the study.

"Illinois has been performing in vitro studies with cows since the 1950s," Wheeler said. "Having the resources made available through Gabriel's research and the other resources at Beckman Institute have worked out to be a perfect-storm scenario."

The team hopes to apply GLIM technology to human fertility research and treatment, as well as a range of different types of tissue research. Popescu plans to continue collaborating with other biomedical researchers and already has had success looking at thick samples of brain tissue in marine life for neuroscience studies.

###

The National Science Foundation, the U. of I. Computational Science and Engineering fellowship and the U. of I. Yuen T. Lo Outstanding Research Award supported this research.

Editor's notes:

To reach Gabriel Popescu, call 217-333-4840; gpopescu@illinois.edu

To reach Matthew Wheeler, call 217-333-2239; mbwheele@illinois.edu

The paper "Gradient light interference microscopy for 3D imaging of unlabeled specimens" is available online and from the U. of I. News Bureau.

Media Contact

Lois E Yoksoulian
leyok@illinois.edu
217-244-2788

 @NewsAtIllinois

http://www.illinois.edu 

Lois E Yoksoulian | EurekAlert!

More articles from Medical Engineering:

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht The Scanpy software processes huge amounts of single-cell data
12.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>