Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New diagnostic imaging techniques deemed safe in simulations

05.06.2014

Gamma and neutron imaging offer possible improvements over existing techniques such as X-ray or CT, but their safety is not yet fully understood.

Using computer simulations, imaging the liver and breast with gamma or neutron radiation was found to be safe, delivering levels of radiation on par with conventional medical imaging, according to researchers at Duke Medicine.


This shows simulated 3D dose measurements of the breast showing the dose imparted to the whole body. The dose is shown on a red and yellow color map, where yellow shows maximum dose.

Credit: Duke Medicine


This shows simulated 3D dose measurements of the abdomen/liver showing the dose imparted to the whole body. The dose is shown on a red and yellow color map, where yellow shows maximum dose.

Credit: Duke Medicine

The findings, published in the June issue of the journal Medical Physics, will help researchers to move testing of gamma and neutron imaging into animals and later humans.

Conventional medical imaging tools – including X-ray, ultrasound, CT and MRI – detect disease by finding the anatomy, or shape and size, of the abnormality. When using these tools to screen for cancer, a tumor must be large enough to be detected, and if found, a surgical biopsy is generally required to determine if it is benign or malignant.

... more about:
»CT »X-ray »benign »biopsy »breast »liver »scans »techniques

Duke researchers are working to develop imaging technologies to detect disease in its earliest stages, much before the tumors grow large enough to be detected using conventional methods. Two imaging techniques they are researching are Neutron Stimulated Emission Computed Tomography and Gamma Stimulated Emission Computed Tomography.

Research has shown that many tumors have an out-of-balance concentration of trace-level elements naturally found in the body, such as aluminum and rubidium. These elements stray from their normal concentration levels at the earliest stages of tumor growth, potentially providing an early signal of disease.

The neutron and gamma imaging methods measure the concentrations of elements in the body, determining molecular properties without the need for a biopsy or injection of contrast media. The goal is for these tests to be able to distinguish between benign and malignant lesions, as well as healthy tissue.

"Gamma and neutron imaging may eventually be able to help us to detect cancer earlier without having to perform an invasive biopsy," said Anuj Kapadia, Ph.D., assistant professor of radiology at Duke University School of Medicine and the study's senior author.

Gamma and neutron imaging may also have applications for patients undergoing cancer treatment. Patients currently wait weeks or months to see if their cancer is responding to a particular treatment and shrinking in size, but gamma and neutron imaging may be able to tell if a treatment is working earlier by detecting molecular changes directly within the tumor.

While improved diagnostic tests would provide clinicians with useful tools, one ongoing question is the safety of gamma and particularly neutron radiation. Upon entering the body, neutrons scatter considerably, with the possibility of reaching several vital organs. Thus, researchers have been concerned about how much radiation is absorbed in the targeted organ versus surrounding tissue. For instance, in a breast scan, how much radiation is delivered unnecessarily to the heart or lungs?

Using detailed computer simulations, Kapadia and his colleagues estimated the radiation dose delivered to the liver and breast using neutron and gamma imaging. They found that the majority of radiation was delivered to organs directly within the radiation beam, and a much lower dose was absorbed by tissue outside of the radiation beam.

In simulated breast scans, the radiation was almost entirely limited to the area of the breast being scanned. The dose to the breast accounted for 96 percent of the radiation in neutron scans and 99 percent in gamma scans. The heart and lungs received less than 1 percent of the radiation dose.

When imaging the liver in simulation, the neutron scan imparted the highest radiation dose to the liver, while in the gamma scan, the stomach wall absorbed the greatest amount of radiation given its location in the direct path of the beam. Further work is needed to reduce and better target gamma radiation doses in liver scans.

"The results show that despite the use of a highly scattering particle such as a neutron, the dose from neutron imaging is on par with other clinical imaging techniques such as X-ray CT," Kapadia said. "Neutron and gamma radiation may become viable imaging alternatives if further testing proves them to be safe and effective."

The researchers will use this information to move their studies into animals, and later, humans.

###

In addition to Kapadia, authors include Matthew D. Belley and William Paul Segars of Duke. The study was supported by the National Institutes of Health (R01-EB001838, T32-EB007185).

Rachel Harrison | Eurek Alert!
Further information:
http://www.duke.edu

Further reports about: CT X-ray benign biopsy breast liver scans techniques

More articles from Medical Engineering:

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

nachricht New microscope technique reveals internal structure of live embryos
08.08.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>