Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New device isolates most aggressive cancer cells


Not all cancer cells are created equal – some stay put in the primary tumor, while others move and invade elsewhere. A major goal for cancer research is predicting which cells will metastasize, and why.

A Cornell cancer research team is taking a new approach to screening for these dangerous cells, using a microfluidic device they invented that isolates only the most aggressive, metastatic cells.

“The approach we’ve taken is a reverse approach from what is conventionally done,” said Cynthia Reinhart-King, associate professor of biomedical engineering and senior author of the recently published Technology Journal paper describing the research.

“Instead of looking at what molecules are being expressed by the tumor, we’re looking for the phenotype – that is, the behavior – of individual cells first. Then we can determine what molecules are causing that behavior.”

Typically, searching for biomarkers of metastasis has focused on screening for certain molecules or genes expressed by large numbers of migrating cancer cells. The problem is that it’s easy to miss subtle differences in the tiny subpopulations of cells that are the most aggressive.

Taking, for example, 100 tumors and seeking out molecular biomarkers for metastasis, one particular molecule might be identified as being “upregulated” in those tumors, Reinhart-King said. But it’s not the whole tumor expressing that particular molecule – some cells express the biomarker and some do not.

The researchers decided to first sort cells with the most aggressive behavior, and analyze only them for molecular changes. Their innovation is a microfluidic device that contains side channels to wash out the less aggressive cells, while herding the more aggressive ones into a separate channel.

For their proof-of-concept, the researchers screened for cells with migratory responses to Epidermal Growth Factor, for which the receptor is known to be present in most human cancers and is tightly linked to poor prognosis.

“The thing we’re most excited about, in addition to the physical device, is the conceptual framework we’re using by trying to shift gears and screen for cells that are causing the worst parts of the disease,” Reinhart-King said. The device could also be used in other applications of tissue engineering, inflammation and wound healing. 

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

Melissa Osgood | Eurek Alert!
Further information:

Further reports about: behavior biomarkers genes metastasis microfluidic migrating phenotype tiny tumors

More articles from Medical Engineering:

nachricht Bern’s surgical procedure for brain tumours a world leader
03.11.2015 | Universitätsspital Bern

nachricht Siemens Healthcare introduces first Twin Robotic X-Ray system
29.10.2015 | Siemens AG

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>