Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device isolates most aggressive cancer cells

04.06.2014

Not all cancer cells are created equal – some stay put in the primary tumor, while others move and invade elsewhere. A major goal for cancer research is predicting which cells will metastasize, and why.

A Cornell cancer research team is taking a new approach to screening for these dangerous cells, using a microfluidic device they invented that isolates only the most aggressive, metastatic cells.

“The approach we’ve taken is a reverse approach from what is conventionally done,” said Cynthia Reinhart-King, associate professor of biomedical engineering and senior author of the recently published Technology Journal paper describing the research.

“Instead of looking at what molecules are being expressed by the tumor, we’re looking for the phenotype – that is, the behavior – of individual cells first. Then we can determine what molecules are causing that behavior.”

Typically, searching for biomarkers of metastasis has focused on screening for certain molecules or genes expressed by large numbers of migrating cancer cells. The problem is that it’s easy to miss subtle differences in the tiny subpopulations of cells that are the most aggressive.

Taking, for example, 100 tumors and seeking out molecular biomarkers for metastasis, one particular molecule might be identified as being “upregulated” in those tumors, Reinhart-King said. But it’s not the whole tumor expressing that particular molecule – some cells express the biomarker and some do not.

The researchers decided to first sort cells with the most aggressive behavior, and analyze only them for molecular changes. Their innovation is a microfluidic device that contains side channels to wash out the less aggressive cells, while herding the more aggressive ones into a separate channel.

For their proof-of-concept, the researchers screened for cells with migratory responses to Epidermal Growth Factor, for which the receptor is known to be present in most human cancers and is tightly linked to poor prognosis.

“The thing we’re most excited about, in addition to the physical device, is the conceptual framework we’re using by trying to shift gears and screen for cells that are causing the worst parts of the disease,” Reinhart-King said. The device could also be used in other applications of tissue engineering, inflammation and wound healing. 

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

Melissa Osgood | Eurek Alert!
Further information:
http://mediarelations.cornell.edu/2014/06/03/new-device-isolates-most-aggressive-cancer-cells/

Further reports about: behavior biomarkers genes metastasis microfluidic migrating phenotype tiny tumors

More articles from Medical Engineering:

nachricht Mainz University Medical Center opens the first Atrial Fibrillation Unit in Germany
30.10.2014 | Johannes Gutenberg-Universität Mainz

nachricht Robotically assisted bypass surgery reduces complications after surgery and cuts recovery
28.10.2014 | Heart and Stroke Foundation of Canada

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Registration Open Now: 18th International ESAFORM Conference on Material Forming

28.10.2014 | Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

 
Latest News

Siemens secures two new orders for wind power projects in Canada

31.10.2014 | Press release

Tropical Storm Vance's Center Looks Like a Pumpkin to NASA's Terra Satellite

31.10.2014 | Earth Sciences

Improved funding for innovative companies: KfW introduces "Entrepreneur Loan Plus"

31.10.2014 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>