Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device isolates most aggressive cancer cells

04.06.2014

Not all cancer cells are created equal – some stay put in the primary tumor, while others move and invade elsewhere. A major goal for cancer research is predicting which cells will metastasize, and why.

A Cornell cancer research team is taking a new approach to screening for these dangerous cells, using a microfluidic device they invented that isolates only the most aggressive, metastatic cells.

“The approach we’ve taken is a reverse approach from what is conventionally done,” said Cynthia Reinhart-King, associate professor of biomedical engineering and senior author of the recently published Technology Journal paper describing the research.

“Instead of looking at what molecules are being expressed by the tumor, we’re looking for the phenotype – that is, the behavior – of individual cells first. Then we can determine what molecules are causing that behavior.”

Typically, searching for biomarkers of metastasis has focused on screening for certain molecules or genes expressed by large numbers of migrating cancer cells. The problem is that it’s easy to miss subtle differences in the tiny subpopulations of cells that are the most aggressive.

Taking, for example, 100 tumors and seeking out molecular biomarkers for metastasis, one particular molecule might be identified as being “upregulated” in those tumors, Reinhart-King said. But it’s not the whole tumor expressing that particular molecule – some cells express the biomarker and some do not.

The researchers decided to first sort cells with the most aggressive behavior, and analyze only them for molecular changes. Their innovation is a microfluidic device that contains side channels to wash out the less aggressive cells, while herding the more aggressive ones into a separate channel.

For their proof-of-concept, the researchers screened for cells with migratory responses to Epidermal Growth Factor, for which the receptor is known to be present in most human cancers and is tightly linked to poor prognosis.

“The thing we’re most excited about, in addition to the physical device, is the conceptual framework we’re using by trying to shift gears and screen for cells that are causing the worst parts of the disease,” Reinhart-King said. The device could also be used in other applications of tissue engineering, inflammation and wound healing. 

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

Melissa Osgood | Eurek Alert!
Further information:
http://mediarelations.cornell.edu/2014/06/03/new-device-isolates-most-aggressive-cancer-cells/

Further reports about: behavior biomarkers genes metastasis microfluidic migrating phenotype tiny tumors

More articles from Medical Engineering:

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

nachricht New microscope technique reveals internal structure of live embryos
08.08.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>