Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device isolates most aggressive cancer cells

04.06.2014

Not all cancer cells are created equal – some stay put in the primary tumor, while others move and invade elsewhere. A major goal for cancer research is predicting which cells will metastasize, and why.

A Cornell cancer research team is taking a new approach to screening for these dangerous cells, using a microfluidic device they invented that isolates only the most aggressive, metastatic cells.

“The approach we’ve taken is a reverse approach from what is conventionally done,” said Cynthia Reinhart-King, associate professor of biomedical engineering and senior author of the recently published Technology Journal paper describing the research.

“Instead of looking at what molecules are being expressed by the tumor, we’re looking for the phenotype – that is, the behavior – of individual cells first. Then we can determine what molecules are causing that behavior.”

Typically, searching for biomarkers of metastasis has focused on screening for certain molecules or genes expressed by large numbers of migrating cancer cells. The problem is that it’s easy to miss subtle differences in the tiny subpopulations of cells that are the most aggressive.

Taking, for example, 100 tumors and seeking out molecular biomarkers for metastasis, one particular molecule might be identified as being “upregulated” in those tumors, Reinhart-King said. But it’s not the whole tumor expressing that particular molecule – some cells express the biomarker and some do not.

The researchers decided to first sort cells with the most aggressive behavior, and analyze only them for molecular changes. Their innovation is a microfluidic device that contains side channels to wash out the less aggressive cells, while herding the more aggressive ones into a separate channel.

For their proof-of-concept, the researchers screened for cells with migratory responses to Epidermal Growth Factor, for which the receptor is known to be present in most human cancers and is tightly linked to poor prognosis.

“The thing we’re most excited about, in addition to the physical device, is the conceptual framework we’re using by trying to shift gears and screen for cells that are causing the worst parts of the disease,” Reinhart-King said. The device could also be used in other applications of tissue engineering, inflammation and wound healing. 

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

Melissa Osgood | Eurek Alert!
Further information:
http://mediarelations.cornell.edu/2014/06/03/new-device-isolates-most-aggressive-cancer-cells/

Further reports about: behavior biomarkers genes metastasis microfluidic migrating phenotype tiny tumors

More articles from Medical Engineering:

nachricht Tiny mechanical wrist gives new dexterity to needlescopic surgery
24.07.2015 | Vanderbilt University

nachricht Printing implants with the laser
21.07.2015 | Laser Zentrum Hannover e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015 | Materials Sciences

Superfast fluorescence sets new speed record

27.07.2015 | Information Technology

Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes

27.07.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>