Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chip promising for tumor-targeting research

23.09.2014

Researchers have developed a chip capable of simulating a tumor's "microenvironment" and plan to use the new system to test the effectiveness of nanoparticles and drugs that target cancer.

The new system, called a tumor-microenvironment-on-chip (T-MOC) device, will allow researchers to study the complex environment surrounding tumors and the barriers that prevent the targeted delivery of therapeutic agents, said Bumsoo Han, a Purdue University associate professor of mechanical engineering.


This illustration shows the design of a new chip capable of simulating a tumor's "microenvironment" to test the effectiveness of nanoparticles and drugs that target cancer. The new system, called a tumor-microenvironment-on-chip device, will allow researchers to study the complex environment surrounding tumors and the barriers that prevent the targeted delivery of therapeutic agents. (Purdue University photo/Altug Ozcelikkale, Bumsoo Han)

Researchers are trying to perfect "targeted delivery" methods using various agents, including an assortment of tiny nanometer-size structures, to selectively attack tumor tissue.

One approach is to design nanoparticles small enough to pass through pores in blood vessels surrounding tumors but too large to pass though the pores of vessels in healthy tissue. The endothelial cells that make up healthy blood vessels are well organized and have small pores in the tight junctions between them. However, the endothelial cells in blood vessels around tumors are irregular and misshapen, with larger pores in the gaps between the cells.

"It was thought that if nanoparticles were designed to be the right size they could selectively move toward only the tumor," Han said. 

However, one complication hindering the success of this strategy is that the pressure of "interstitial fluid" inside tumors is greater than that of surrounding healthy tissue. This greater pressure pushes out most drug-delivery and imaging agents, with only a small percentage of them reaching the target tumor.

Now, new research findings suggest that the T-MOC system is capable of simulating the complex environment around tumors and providing detailed information about how nanoparticles move through this environment. Such information could aid efforts to perfect targeted delivery methods.

The findings are detailed in a research paper appearing online this month and will be published in a print edition of the Journal of Controlled Release in November. The paper was authored by postdoctoral research associate Bongseop Kwak; graduate students Altug Ozcelikkale and Crystal S. Shin; Kinam Park, the Showalter Distinguished Professor of Biomedical Engineering and a professor of pharmaceutics; and Han.

The T-MOC chip is about 4.5 centimeters (1.8 inches) square and contains "microfluidic" channels where tumor cells and endothelial cells are cultured. The chip also incorporates extracellular matrix – a spongy, scaffold-like material made of collagen found between cells in living tissue.

The new chip offers an alternative to conventional experimental methods. Studies using cancer cells in petri plates exclude the complex microenvironment surrounding tumors, and research with animals does not show precisely how proposed therapies might work in people.

However, the T-MOC system has the potential to mimic cancer in humans, Han said.

The researchers tested the technology using human breast cancer and endothelial cells and studied how nanoparticles moved within the microenvironment.

Future work will expand to the study of anticancer drugs. Eventually, the devices might be used to grow tumor cells from patients to gauge the effectiveness of specific drugs in those people.

The work is based at the Birck Nanotechnology Center in Purdue's Discovery Park. It was supported by the National Science Foundation, National Institutes of Health, and a Collaboration in Translational Research Award from the Indiana Clinical and Translational Sciences Institute. Han's work also been supported by the B.S.F. Schaefer Award, the Discovery Park Fellowship, and an Incentive Grant Program from Purdue. 

Writer: Emil Venere, 765-494-4709, venere@purdue.edu 

Source: Bumsoo Han, 765-494-5626, bumsoo@purdue.edu 

ABSTRACT

Simulation of Complex Transport of Nanoparticles around a Tumor Using Tumor- Microenvironment-on-Chip      

Bongseop Kwak, Altug Ozcelikkale, Crystal S Shin, Kinam Park, and  Bumsoo Han  

Purdue University  

Delivery of therapeutic agents selectively to tumor tissue, which is referred as "targeted delivery," is one of the most ardently pursued goals of cancer therapy. Recent advances in nanotechnology enable numerous types of nanoparticles (NPs) whose properties can be designed for targeted delivery to tumors. In spite of promising early results, the delivery and therapeutic efficacy of the majority of NPs are still quite limited. This is mainly attributed to the limitation of currently available tumor models to test these NPs and systematically study the effects of complex transport and pathophysiological barriers around the tumors. In this study, thus, we developed a new in vitro tumor model to recapitulate the tumor microenvironment determining the transport around tumors. This model, named tumor-microenvironment-on-chip (T-MOC), consists of 3-dimensional microfluidic channels where tumor cells and endothelial cells are cultured within extracellular matrix under perfusion of interstitial fluid. Using this T-MOC platform, the transport of NPs and its variation due to tumor microenvironmental parameters have been studied including cut-off pore size, interstitial fluid pressure, and tumor tissue microstructure. The results suggest that T-MOC is capable of simulating the complex transport around the tumor, and providing detailed information about NP transport behavior. This finding confirms that NPs should be designed considering their dynamic interactions with tumor microenvironment.

Emil Venere | Eurek Alert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q3/new-chip-promising-for-tumor-targeting-research.html

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>