Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscience and big data: How to find simplicity in the brain

25.08.2014

Scientists can now monitor and record the activity of hundreds of neurons concurrently in the brain, and ongoing technology developments promise to increase this number manyfold. However, simply recording the neural activity does not automatically lead to a clearer understanding of how the brain works.

In a new review paper published in Nature Neuroscience, Carnegie Mellon University's Byron M. Yu and Columbia University's John P. Cunningham describe the scientific motivations for studying the activity of many neurons together, along with a class of machine learning algorithms — dimensionality reduction — for interpreting the activity.

In recent years, dimensionality reduction has provided insight into how the brain distinguishes between different odors, makes decisions in the face of uncertainty and is able to think about moving a limb without actually moving.

Yu and Cunningham contend that using dimensionality reduction as a standard analytical method will make it easier to compare activity patterns in healthy and abnormal brains, ultimately leading to improved treatments and interventions for brain injuries and disorders.

"One of the central tenets of neuroscience is that large numbers of neurons work together to give rise to brain function. However, most standard analytical methods are appropriate for analyzing only one or two neurons at a time. To understand how large numbers of neurons interact, advanced statistical methods, such as dimensionality reduction, are needed to interpret these large-scale neural recordings," said Yu, an assistant professor of electrical and computer engineering and biomedical engineering at CMU and a faculty member in the Center for the Neural Basis of Cognition (CNBC).

The idea behind dimensionality reduction is to summarize the activity of a large number of neurons using a smaller number of latent (or hidden) variables. Dimensionality reduction methods are particularly useful to uncover inner workings of the brain, such as when we ruminate or solve a mental math problem, where all the action is going on inside the brain and not in the outside world. These latent variables can be used to trace out the path of ones thoughts.

"One of the major goals of science is to explain complex phenomena in simple terms. Traditionally, neuroscientists have sought to find simplicity with individual neurons. However, it is becoming increasingly recognized that neurons show varied features in their activity patterns that are difficult to explain by examining one neuron at a time. Dimensionality reduction provides us with a way to embrace single-neuron heterogeneity and seek simple explanations in terms of how neurons interact with each other," said Cunningham, assistant professor of statistics at Columbia.

Although dimensionality reduction is relatively new to neuroscience compared to existing analytical methods, it has already shown great promise. With Big Data getting ever bigger thanks to the continued development of neural recording technologies and the federal BRAIN Initiative, the use of dimensionality reduction and related methods will likely become increasingly essential.

###

The CNBC, a joint project between Carnegie Mellon and the University of Pittsburgh, is devoted to investigating the neural mechanisms that give rise to human cognitive abilities. The center will celebrate its 20th anniversary of advancing brain, computation and behavior through research and training this fall.

For more information, visit http://www.cnbc.cmu.edu/.

The Grossman Center for the Statistics of Mind, the Simons Foundation, the Gatsby Charitable Foundation and the National Institutes of Health's National Institute of Child Health and Human Development funded this research.

For more information, visit http://users.ece.cmu.edu/~byronyu/ and http://stat.columbia.edu/~cunningham/.

Shilo Rea | Eurek Alert!

Further reports about: Neuroscience activity analytical interact latent neurons patterns reduction

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>