Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscience and big data: How to find simplicity in the brain

25.08.2014

Scientists can now monitor and record the activity of hundreds of neurons concurrently in the brain, and ongoing technology developments promise to increase this number manyfold. However, simply recording the neural activity does not automatically lead to a clearer understanding of how the brain works.

In a new review paper published in Nature Neuroscience, Carnegie Mellon University's Byron M. Yu and Columbia University's John P. Cunningham describe the scientific motivations for studying the activity of many neurons together, along with a class of machine learning algorithms — dimensionality reduction — for interpreting the activity.

In recent years, dimensionality reduction has provided insight into how the brain distinguishes between different odors, makes decisions in the face of uncertainty and is able to think about moving a limb without actually moving.

Yu and Cunningham contend that using dimensionality reduction as a standard analytical method will make it easier to compare activity patterns in healthy and abnormal brains, ultimately leading to improved treatments and interventions for brain injuries and disorders.

"One of the central tenets of neuroscience is that large numbers of neurons work together to give rise to brain function. However, most standard analytical methods are appropriate for analyzing only one or two neurons at a time. To understand how large numbers of neurons interact, advanced statistical methods, such as dimensionality reduction, are needed to interpret these large-scale neural recordings," said Yu, an assistant professor of electrical and computer engineering and biomedical engineering at CMU and a faculty member in the Center for the Neural Basis of Cognition (CNBC).

The idea behind dimensionality reduction is to summarize the activity of a large number of neurons using a smaller number of latent (or hidden) variables. Dimensionality reduction methods are particularly useful to uncover inner workings of the brain, such as when we ruminate or solve a mental math problem, where all the action is going on inside the brain and not in the outside world. These latent variables can be used to trace out the path of ones thoughts.

"One of the major goals of science is to explain complex phenomena in simple terms. Traditionally, neuroscientists have sought to find simplicity with individual neurons. However, it is becoming increasingly recognized that neurons show varied features in their activity patterns that are difficult to explain by examining one neuron at a time. Dimensionality reduction provides us with a way to embrace single-neuron heterogeneity and seek simple explanations in terms of how neurons interact with each other," said Cunningham, assistant professor of statistics at Columbia.

Although dimensionality reduction is relatively new to neuroscience compared to existing analytical methods, it has already shown great promise. With Big Data getting ever bigger thanks to the continued development of neural recording technologies and the federal BRAIN Initiative, the use of dimensionality reduction and related methods will likely become increasingly essential.

###

The CNBC, a joint project between Carnegie Mellon and the University of Pittsburgh, is devoted to investigating the neural mechanisms that give rise to human cognitive abilities. The center will celebrate its 20th anniversary of advancing brain, computation and behavior through research and training this fall.

For more information, visit http://www.cnbc.cmu.edu/.

The Grossman Center for the Statistics of Mind, the Simons Foundation, the Gatsby Charitable Foundation and the National Institutes of Health's National Institute of Child Health and Human Development funded this research.

For more information, visit http://users.ece.cmu.edu/~byronyu/ and http://stat.columbia.edu/~cunningham/.

Shilo Rea | Eurek Alert!

Further reports about: Neuroscience activity analytical interact latent neurons patterns reduction

More articles from Medical Engineering:

nachricht Innovative device allows 3-D imaging of the breast with less radiation
17.06.2016 | DOE/Thomas Jefferson National Accelerator Facility

nachricht The vascular bypass revolution
13.06.2016 | Université de Genève

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Rotating ring of complex organic molecules discovered around newborn star

28.06.2016 | Physics and Astronomy

Unidentified spectra detector

28.06.2016 | Life Sciences

Clandestine black hole may represent new population

28.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>