Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MRI technology to provide even better images of the inside of the human body

29.11.2012
German Federal Ministry of Education and Research earmarks EUR 1.3 million to develop magnetic resonance imaging using polarized substances

Over the past 30 years, magnetic resonance imaging has evolved into one of the most important imaging procedures in medical diagnostics. With a new approach based on the use of polarized gases and dissolved substances, it will in future be possible to produce even better quality images of the inside of the human body.


Xenon polarizer

photo/©: Institute of Physics / JGU

The German Federal Ministry of Education and Research (BMBF) will be providing EUR 1.3 million over the next three years to enable researchers at Johannes Gutenberg University Mainz (JGU) and the Max Planck Institute for Polymer Research to make the new procedure ready for the market.

A team of researchers led by Professor Dr. Werner Heil at JGU's Institute of Physics is working on a technology that is still in its infancy, but which has the potential for major innovation. The project entitled "Magnetic Resonance Imaging (MRI) Using Innovative Hyperpolarized Contrast Agents" will commence in December 2012. It will be funded by the German Federal Ministry of Education and Research as part of its high-tech strategy "Validating the Innovation Potential of Scientific Research – VIP." This strategy is designed to provide support to researchers in making the crucial first steps to adapt new scientific findings for commercial applications.

Nuclear spin tomography, or magnetic resonance imaging (MRI) as it is more commonly known, provides highly detailed images of organs and tissues without exposing the patient to potentially harmful radiation. The drawback of this method, however, is its low sensitivity, which is currently being improved mainly through the use of ever stronger and more expensive magnets. During the project, the Mainz scientists will be taking a different approach with the aim of obtaining more accurate images and, consequently, new perspectives on diagnosing illnesses.

Normally, the body's endogenous hydrogen protons are used as signal generators for the purpose of MRI. But it is also possible to use hyperpolarized atoms for MRI, although in this case they need to be introduced into the body. In the 1990s, Werner Heil and the Mainz physicist Ernst-Wilhelm Otten developed a procedure in which the noble gas helium-3 is polarized by lasers. This polarized gas can be inhaled and provides high-resolution tomographic images of the lungs so that pulmonary disorders can be identified even in the very smallest of the bronchi. Taking this as their starting point, the scientists involved would like to improve the technology even further.

"However, the laser-induced polarization of noble gases alone is not sufficient for our purposes," explains Heil. In addition to helium, it is also possible in principle to polarize xenon, another noble gas. However, its anesthetic effect means that its suitability for use in medical diagnostics is limited. The use of brand new substances as markers, such as polarized carbon-13, would open up new options for diagnosticians: Biological molecules and substances could be labeled by means of hyperpolarization so that their passage through the body could be directly monitored. Heil expects that it may also be possible to observe dynamic processes on the molecular level, such as certain metabolic processes.

At the same time, it is still necessary to overcome various obstacles before practical implementation can be considered. Except in the case of helium, it is not possible to maintain hyperpolarization over relevant periods. "This means we have to abbreviate the processes of polarization, administration, and detection so they can all be performed in no more than a minute at most," states Heil. Moreover, getting the hyperpolarized substances into the bloodstream without harming the body is difficult. In an attempt to resolve this problem, the research team is working with membranes, such as those used in heart-lung machines or for dialysis. "We also need to separate the reaction chamber from the treatment room," explains Dr. Peter Blümler, who is focusing on this aspect. "Perhaps we will also need several membranes to ensure that only the correct substances enter the blood." However, it seems that a solution to another problem may have already been found. While the polarization of helium or xenon can be achieved with lasers, Dr. Kerstin Münnemann of the Max Planck Institute for Polymer Research has shown in her widely acclaimed work that it is possible to induce magnetic polarization in other substances by means of reaction with parahydrogen. The three scientists intend to combine their expertise to create novel diagnostic procedures at the point where physics, chemistry, and medicine intersect.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15917_ENG_HTML.php
http://www.ag-heil.physik.uni-mainz.de/

More articles from Medical Engineering:

nachricht Using 'Pacemakers' in spinal cord injuries
12.02.2016 | Charité – Universitätsmedizin Berlin

nachricht Fraunhofer ITEM takes over and continues development of inhalation technology assets from Takeda
10.02.2016 | Fraunhofer Institute for Toxicology and Experimental Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>