Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MRI technology to provide even better images of the inside of the human body

29.11.2012
German Federal Ministry of Education and Research earmarks EUR 1.3 million to develop magnetic resonance imaging using polarized substances

Over the past 30 years, magnetic resonance imaging has evolved into one of the most important imaging procedures in medical diagnostics. With a new approach based on the use of polarized gases and dissolved substances, it will in future be possible to produce even better quality images of the inside of the human body.


Xenon polarizer

photo/©: Institute of Physics / JGU

The German Federal Ministry of Education and Research (BMBF) will be providing EUR 1.3 million over the next three years to enable researchers at Johannes Gutenberg University Mainz (JGU) and the Max Planck Institute for Polymer Research to make the new procedure ready for the market.

A team of researchers led by Professor Dr. Werner Heil at JGU's Institute of Physics is working on a technology that is still in its infancy, but which has the potential for major innovation. The project entitled "Magnetic Resonance Imaging (MRI) Using Innovative Hyperpolarized Contrast Agents" will commence in December 2012. It will be funded by the German Federal Ministry of Education and Research as part of its high-tech strategy "Validating the Innovation Potential of Scientific Research – VIP." This strategy is designed to provide support to researchers in making the crucial first steps to adapt new scientific findings for commercial applications.

Nuclear spin tomography, or magnetic resonance imaging (MRI) as it is more commonly known, provides highly detailed images of organs and tissues without exposing the patient to potentially harmful radiation. The drawback of this method, however, is its low sensitivity, which is currently being improved mainly through the use of ever stronger and more expensive magnets. During the project, the Mainz scientists will be taking a different approach with the aim of obtaining more accurate images and, consequently, new perspectives on diagnosing illnesses.

Normally, the body's endogenous hydrogen protons are used as signal generators for the purpose of MRI. But it is also possible to use hyperpolarized atoms for MRI, although in this case they need to be introduced into the body. In the 1990s, Werner Heil and the Mainz physicist Ernst-Wilhelm Otten developed a procedure in which the noble gas helium-3 is polarized by lasers. This polarized gas can be inhaled and provides high-resolution tomographic images of the lungs so that pulmonary disorders can be identified even in the very smallest of the bronchi. Taking this as their starting point, the scientists involved would like to improve the technology even further.

"However, the laser-induced polarization of noble gases alone is not sufficient for our purposes," explains Heil. In addition to helium, it is also possible in principle to polarize xenon, another noble gas. However, its anesthetic effect means that its suitability for use in medical diagnostics is limited. The use of brand new substances as markers, such as polarized carbon-13, would open up new options for diagnosticians: Biological molecules and substances could be labeled by means of hyperpolarization so that their passage through the body could be directly monitored. Heil expects that it may also be possible to observe dynamic processes on the molecular level, such as certain metabolic processes.

At the same time, it is still necessary to overcome various obstacles before practical implementation can be considered. Except in the case of helium, it is not possible to maintain hyperpolarization over relevant periods. "This means we have to abbreviate the processes of polarization, administration, and detection so they can all be performed in no more than a minute at most," states Heil. Moreover, getting the hyperpolarized substances into the bloodstream without harming the body is difficult. In an attempt to resolve this problem, the research team is working with membranes, such as those used in heart-lung machines or for dialysis. "We also need to separate the reaction chamber from the treatment room," explains Dr. Peter Blümler, who is focusing on this aspect. "Perhaps we will also need several membranes to ensure that only the correct substances enter the blood." However, it seems that a solution to another problem may have already been found. While the polarization of helium or xenon can be achieved with lasers, Dr. Kerstin Münnemann of the Max Planck Institute for Polymer Research has shown in her widely acclaimed work that it is possible to induce magnetic polarization in other substances by means of reaction with parahydrogen. The three scientists intend to combine their expertise to create novel diagnostic procedures at the point where physics, chemistry, and medicine intersect.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15917_ENG_HTML.php
http://www.ag-heil.physik.uni-mainz.de/

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>