Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MRI technology to provide even better images of the inside of the human body

29.11.2012
German Federal Ministry of Education and Research earmarks EUR 1.3 million to develop magnetic resonance imaging using polarized substances

Over the past 30 years, magnetic resonance imaging has evolved into one of the most important imaging procedures in medical diagnostics. With a new approach based on the use of polarized gases and dissolved substances, it will in future be possible to produce even better quality images of the inside of the human body.


Xenon polarizer

photo/©: Institute of Physics / JGU

The German Federal Ministry of Education and Research (BMBF) will be providing EUR 1.3 million over the next three years to enable researchers at Johannes Gutenberg University Mainz (JGU) and the Max Planck Institute for Polymer Research to make the new procedure ready for the market.

A team of researchers led by Professor Dr. Werner Heil at JGU's Institute of Physics is working on a technology that is still in its infancy, but which has the potential for major innovation. The project entitled "Magnetic Resonance Imaging (MRI) Using Innovative Hyperpolarized Contrast Agents" will commence in December 2012. It will be funded by the German Federal Ministry of Education and Research as part of its high-tech strategy "Validating the Innovation Potential of Scientific Research – VIP." This strategy is designed to provide support to researchers in making the crucial first steps to adapt new scientific findings for commercial applications.

Nuclear spin tomography, or magnetic resonance imaging (MRI) as it is more commonly known, provides highly detailed images of organs and tissues without exposing the patient to potentially harmful radiation. The drawback of this method, however, is its low sensitivity, which is currently being improved mainly through the use of ever stronger and more expensive magnets. During the project, the Mainz scientists will be taking a different approach with the aim of obtaining more accurate images and, consequently, new perspectives on diagnosing illnesses.

Normally, the body's endogenous hydrogen protons are used as signal generators for the purpose of MRI. But it is also possible to use hyperpolarized atoms for MRI, although in this case they need to be introduced into the body. In the 1990s, Werner Heil and the Mainz physicist Ernst-Wilhelm Otten developed a procedure in which the noble gas helium-3 is polarized by lasers. This polarized gas can be inhaled and provides high-resolution tomographic images of the lungs so that pulmonary disorders can be identified even in the very smallest of the bronchi. Taking this as their starting point, the scientists involved would like to improve the technology even further.

"However, the laser-induced polarization of noble gases alone is not sufficient for our purposes," explains Heil. In addition to helium, it is also possible in principle to polarize xenon, another noble gas. However, its anesthetic effect means that its suitability for use in medical diagnostics is limited. The use of brand new substances as markers, such as polarized carbon-13, would open up new options for diagnosticians: Biological molecules and substances could be labeled by means of hyperpolarization so that their passage through the body could be directly monitored. Heil expects that it may also be possible to observe dynamic processes on the molecular level, such as certain metabolic processes.

At the same time, it is still necessary to overcome various obstacles before practical implementation can be considered. Except in the case of helium, it is not possible to maintain hyperpolarization over relevant periods. "This means we have to abbreviate the processes of polarization, administration, and detection so they can all be performed in no more than a minute at most," states Heil. Moreover, getting the hyperpolarized substances into the bloodstream without harming the body is difficult. In an attempt to resolve this problem, the research team is working with membranes, such as those used in heart-lung machines or for dialysis. "We also need to separate the reaction chamber from the treatment room," explains Dr. Peter Blümler, who is focusing on this aspect. "Perhaps we will also need several membranes to ensure that only the correct substances enter the blood." However, it seems that a solution to another problem may have already been found. While the polarization of helium or xenon can be achieved with lasers, Dr. Kerstin Münnemann of the Max Planck Institute for Polymer Research has shown in her widely acclaimed work that it is possible to induce magnetic polarization in other substances by means of reaction with parahydrogen. The three scientists intend to combine their expertise to create novel diagnostic procedures at the point where physics, chemistry, and medicine intersect.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15917_ENG_HTML.php
http://www.ag-heil.physik.uni-mainz.de/

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>