Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel MRI technique could reduce breast biopsies

02.10.2012
Water diffusion measurements with MRI could decrease false-positive breast cancer results and reduce preventable biopsies, according to a new study published online in the journal Radiology. Researchers said the technique also could improve patient management by differentiating high-risk lesions requiring additional workup from other non-malignant subtypes.

Dynamic contrast-enhanced MRI (DCE-MRI) has emerged in recent years as a useful tool in breast cancer detection and staging. One of its primary limitations is a substantial number of false-positive findings that require biopsies.

"Many benign lesions demonstrate enhancement on DCE-MRI," said Savannah C. Partridge, Ph.D., research associate professor at the University of Washington, Seattle Cancer Care Alliance. "We need another means for differentiating benign lesions from malignancies."

One possible solution is diffusion-weighted imaging (DWI), an MRI technique that calculates the apparent diffusion coefficient (ADC)—a measure of how water moves through tissue.

"DWI has been used mostly in neurological applications, but it's been studied more recently in breast imaging," Dr. Partridge said. "It only adds a couple of minutes to the MRI exam and does not require additional contrast or any extra hardware."

Research has shown that DWI is a promising tool for distinguishing between benign and malignant breast lesions. Normal breast tissue has a high ADC because water moves through it relatively freely, while most cancers have a lower ADC because their cells are more tightly packed and restrict water motion. However, significant overlap exists between the ADC values of non-malignant lesions and breast malignancies, and little is known about the ADC values of specific subtypes of non-malignant lesions.

For the new study, Dr. Partridge and colleagues evaluated the DWI characteristics of non-malignant lesions in 165 women. Based on ADC values above a previously determined diagnostic threshold, DWI successfully characterized 46 percent of non-malignant breast lesions identified as false-positive findings on DCE-MRI as benign.

"We were excited to see the number of false positives that could be reduced through this approach," Dr. Partridge said. "DWI gives us extra microstructural information to distinguish among lesions. We can use ADC values to draw a cutoff above which we might not need to do a biopsy."

The research team is planning a multicenter trial to validate the findings and determine how to best to incorporate ADC measures into clinical breast MRI interpretations.

"We are very motivated to translate this promising technology to a clinically useful breast imaging tool," Dr. Partridge said.

"Nonmalignant Breast Lesions: ADCs of Benign and High-Risk Subtypes Assessed as False-Positive at Dynamic Enhanced MR Imaging." Collaborating with Dr. Partridge were Sana Parsian, M.D., Habib Rahbar, M.D., Kimberly H. Allison, M.D., Wendy D. DeMartini, M.D., Matthew L. Olson, M.S., and Constance D. Lehman, M.D., Ph.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 50,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on breast MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>