Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New MRI technique may predict progress of dementias

Computer modeling supports theory that many dementias spread like prion diseases

A new technique for analyzing brain images offers the possibility of using magnetic resonance imaging (MRI) to predict the rate of progression and physical path of many degenerative brain diseases, report scientists at the San Francisco VA Medical Center and the University of California, San Francisco.

The technique, developed by SFVAMC scientists in collaboration with a team led by Bruce Miller, MD, clinical director of the UCSF Memory and Aging Center, also supports mounting evidence that dementias spread through the brain along specific neuronal pathways in the same manner as prion diseases (see related UCSF story).

The scientists employed new computer modeling techniques to realistically predict the physical progression of Alzheimer's disease and frontotemporal dementia (FTD) using images of 14 healthy brains.

The models were based on whole-brain tractography, an MRI technique that maps the neural pathways, or "communication wires," that connect different areas of the brain. The spread of disease along those pathways, as predicted by the models, closely matched actual MRI images of brain degeneration in 18 Alzheimer's patients and 18 FTD patients. Their study was published in the March 22 edition of Neuron.

"The results need to be replicated, but they suggest that, by using this approach, we can predict the location and course of future brain atrophy in Alzheimer's, FTD and other degenerative brain diseases, based on just one MRI taken at the outset of the disease," said senior author Michael Weiner, MD, director of the SFVAMC Center for Imaging of Neurodegenerative Diseases. "This would be extremely useful in planning treatment, and in helping patients and families know what to expect as dementia progresses."

Weiner, who is also a UCSF professor of radiology, medicine, psychiatry and neurology, said that the results were "consistent with an emerging concept that brain damage occurs in these neurodegenerative diseases in a diffusive, prion-like propagation."

A prion is an infectious, misfolded form of a normal protein. These proteins leave destructive amyloid deposits in the brains in which they develop, causing degeneration and eventual death. They are responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, or "mad cow" disease, in cattle. In 1997, neurologist Stanley B. Prusiner of UCSF was awarded the Nobel Prize in Medicine for discovering and characterizing the prion. His finding overturned a tenet of modern biology, showing that a protein, rather than just the molecules DNA and RNA, could cause infection.

"The idea of a prion-like mode of progression in dementias, which many scientists are beginning to support, is that the misfolded protein in one neuron will infect a neighboring brain cell, causing proteins in that cell to misfold in turn, and that the spread of these misfolded proteins flows along certain networks in the brain," explained Weiner. "For instance, in Alzheimer's, there is a spread of amyloid protein along the memory network. This paper reinforces the idea that the damage occurs progressively along that network and others."

Weiner emphasized that Alzheimer's and frontotemporal dementia "are not infectious diseases" like Creutzfeldt-Jakob. But he said "it may be that a little seed of the disease begins in one neuron in the brain and spreads in a similar way – so it's infectious within the brain, from one neuron to the next."

The lead author of the paper is Ashish Raj, PhD, of SFVAMC and UCSF at the time of the study and currently at Weill Medical College, Cornell University, NY; the co-author is Amy Kuceyeski of Weill Cornell.

The study was supported by funds from the National Institutes of Health, some of which were administered by the Northern California Institute for Research and Education. The UCSF California Alzheimer's Disease Research Center also supported and contributed to the study.

NCIRE - The Veterans Health Research Institute - is the largest research institute associated with a VA medical center. Its mission is to improve the health and well-being of veterans and the general public by supporting a world-class biomedical research program conducted by the UCSF faculty at SFVAMC.

SFVAMC has the largest medical research program in the national VA system, with more than 200 research scientists, all of whom are faculty members at UCSF.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Steve Tokar | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>