Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MRI technique used to identify early-stage coronary disease

09.10.2012
With the results of a magnetic resonance imaging (MRI) study from the National Institutes of Health (NIH), researchers say they are closer to finding an imaging technique that can identify thickening of the coronary artery wall, an early stage of coronary heart disease (CAD). The study is published online in the journal Radiology.

"Imaging the coronary arteries that supply the heart with blood is extremely difficult because they are very small and constantly in motion," said lead researcher Khaled Z. Abd-Elmoniem, Ph.D., staff scientist in the Biomedical and Metabolic Imaging branch of NIH's National Institute of Diabetes and Digestive and Kidney Diseases. "Obtaining a reliable and accurate image of these vessels is very important because thickening of the vessel wall is an early indicator of atherosclerosis."

CAD occurs when deposits of fat and cholesterol called plaques build up inside coronary arteries (a condition called atherosclerosis), increasing the risk of a heart attack and other coronary events. By identifying the vessel wall thickening that precedes artery narrowing, early intervention is possible.

"We currently have no reliable way to noninvasively image coronary artery disease in its early stages, when the disease can be treated with lifestyle changes and medications to lower cholesterol," Dr. Abd-Elmoniem said.

The researchers used MRI to measure the wall thickness of the coronary arteries in 26 patients with at least one risk factor for CAD and 12 healthy control participants matched to patients by body mass index (BMI). The mean age of the patients, which included 13 men and 13 women, was 48; healthy controls included three men and nine women (mean age 26).

To measure the coronary artery wall thickness in each of the study's participants, the researchers used both a single-frame MRI scan and an MRI technique called time-resolved multi-frame acquisition, in which five continuous images are captured in order to increase the success rate of obtaining an image free of blurring.

Using the time-resolved multi-frame acquisition method, the success rate for obtaining a usable image was 90 percent versus a success rate of 76 percent for the single-frame method.

Use of the time-resolved multi-frame technique also resulted in a greater ability to detect a significant difference between the wall thickness measurements of CAD patients and the healthy participants, as well as a smaller standard deviation, which is indicative of more precise measurements.

"These results suggest that MRI may be used in the future to screen for individuals at risk for coronary artery disease and may be useful for monitoring the effects of therapies," Dr. Abd-Elmoniem said.

"Dr. Abd-Elmoniem is a bright and inventive scientist who first suggested this innovative approach to improving coronary wall imaging," said Roderic Pettigrew, Ph.D., M.D., Director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and senior collaborator of the study. "We are delighted that the technique is showing such practical promise."

Dr. Abd-Elmoniem said that unlike blood tests that measure cholesterol and lipids in the blood, which can be indicators of atherosclerosis, the thickness of coronary artery walls is a direct measurement of early-stage CAD. He said additional studies are needed to validate the time-resolved multi-frame MRI technique.

"Coronary Vessel Wall 3-T MR Imaging with Time-Resolved Acquisition of Phase-Sensitive Dual Inversion-Recovery (TRAPD) Technique: Initial Results in Patients with Risk Factors for Coronary Artery Disease." Collaborating with Drs. Abd-Elmoniem and Pettigrew was Ahmed M. Gharib, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 50,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Novel PET imaging agent could help guide therapy for brain diseases
03.04.2018 | Society of Nuclear Medicine and Molecular Imaging

nachricht New Computer Architecture: Time Lapse for Dementia Research
29.03.2018 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>