Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI shows gray matter myelin loss strongly related to MS disability

10.09.2014

People with multiple sclerosis (MS) lose myelin in the gray matter of their brains and the loss is closely correlated with the severity of the disease, according to a new magnetic resonance imaging (MRI) study. Researchers said the findings could have important applications in clinical trials and treatment monitoring. The study appears online in the journal Radiology.

Loss of myelin, the fatty protective sheath around nerve fibers, is a characteristic of MS, an inflammatory disease of the central nervous system that can lead to a variety of serious neurological symptoms and disability.


The scheme demonstrating how an MPF map is computed from source MR images. Imaging protocol includes three gradient-echo images with variable flip angles, a gradient-echo image with off-resonance radiofrequency saturation enabling the magnetization transfer effect (MT-weighted image), and a reference image that is a similar gradient-echo image obtained without saturation. Additionally, an MR imager produces maps of the main magnetic field (B0) and radiofrequency field (B1), which are used to correct errors caused by imperfectness of imager's hardware. MPF maps are computed voxel-by-voxel in two steps, (A) and (B), using special software developed by the authors. During the first step (A), a map of the longitudinal relaxation rate (R1) is generated as described in the literature. This map along with an MT-weighted image and a reference image are used to compute an MPF map in the second step (B) based on an iterative algorithm recently described by the authors.

Credit: Radiological Society of North America

MS is typically considered a disease of the brain's signal-conducting white matter, where myelin is most abundant, but myelin is also present in smaller amounts in gray matter, the brain's information processing center that is made up primarily of nerve cell bodies.

Though the myelin content in gray matter is small, it is still extremely important to proper function, as it enables protection of thin nerve fibers connecting neighboring areas of the brain cortex, according to Vasily L. Yarnykh, Ph.D., associate professor in the Department of Radiology at University of Washington in Seattle.

... more about:
»MRI »MS »RRMS »Radiological »disability »spinal

"The fact that MS patients lose myelin not only in white but also in gray matter has been proven by earlier post-mortem pathological studies," he said. "However, the clinical significance of the myelin loss, or demyelination, in gray matter has not been established because of the absence of appropriate imaging methods."

To learn more about associations between MS and demyelination in both white and gray matter, Dr. Yarnykh and colleagues used a refined MRI technique that provides information on the content of biological macromolecules – molecules present in tissues and composed of a large number of atoms, such as proteins, lipids and carbohydrates. The new method, known as macromolecular proton fraction (MPF) mapping, has been hampered in the past because of the length of time required for data collection, but improvements now allow much faster generation of whole-brain maps that reflect the macromolecular content in tissues.

"The method utilizes a standard MRI scanner and doesn't require any special hardware—only some software modifications," Dr. Yarnykh said. "MPF mapping allows quantitative assessment of microscopic demyelination in brain tissues that look normal on clinical images, and is the only existing method able to evaluate the myelin content in gray matter."

The researchers looked at 30 MS patients, including 18 with relapsing-remitting MS (RRMS), the most common type of MS initially diagnosed, and 12 with the more advanced type of disease known as secondary progressive MS (SPMS). Fourteen healthy control participants were also included in the study. Each participant underwent MRI on a 3-Tesla imager, and the researchers reconstructed 3-D whole-brain MPF maps to look at normal-appearing white matter, gray matter and MS lesions. The researchers further compared the results of their imaging technique with clinical tests characterizing neurological dysfunction in MS patients.

The results showed that MPF was significantly lower in both white and gray matter in RRMS patients compared with healthy controls, and was also significantly reduced in both normal-appearing brain tissues and lesions of SPMS patients compared to RRMS patients with the largest relative decrease in gray matter. MPF in brain tissues of MS patients significantly correlated with clinical disability and the strongest associations were found for gray matter.

"The major finding of the study is that the loss of myelin in gray matter caused by MS in its relative amount is comparable to or even larger than that in white matter," said Dr. Yarnykh. "Furthermore, gray matter demyelination is much more advanced in patients with secondary-progressive MS, and it is very strongly related to patients' disability. As such, we believe that information about gray matter myelin damage in MS is of primary clinical relevance."

The improved technique has potentially important applications for MS treatments targeted to protect and restore myelin.

"First, this method may provide an objective measure of the disease progression and treatment success in clinical trials," Dr. Yarnykh said. "And second, assessment of both gray and white matter damage with this method may become an individual patient management tool in the future."

Dr. Yarnykh and colleagues are currently conducting additional research on the new method with the support of the National Multiple Sclerosis Society and the National Institutes of Health.

"This study was done on the participants at a single point in time," he said. "Now we want to compare MS patients with control participants to see how myelin content will evolve over time. We further plan to extend our method to the spinal cord imaging and test whether the combined assessment of demyelination in the brain and spinal cord could better explain disability progression as compared to brain demyelination alone."

###

"Fast Whole-Brain Three-dimensional Macromolecular Proton Fraction Mapping in Multiple Sclerosis." Collaborating with Dr. Yarnykh were James D. Bowen, M.D., Alexey Samsonov, Ph.D., Pavle Repovic, M.D., Angeli Mayadev, M.D., Peiqing Qian, M.D., Beena Gangadharan, Ph.D., Bart P. Keogh, M.D., Ph.D., Kenneth R. Maravilla, M.D., and Lily K. Jung Henson, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 53,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on MRI of the brain, visit RadiologyInfo.org

Linda Brooks | Eurek Alert!

Further reports about: MRI MS RRMS Radiological disability spinal

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>