Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using MRI, researchers may predict which adults will develop Alzheimer's

Using MRI, researchers may be able to predict which adults with mild cognitive impairment are more likely to progress to Alzheimer's disease, according to the results of a study published online and in the June issue of Radiology.

Mild cognitive impairment (MCI) is an intermediate stage between the decline in mental abilities that occurs in normal aging and the more pronounced deterioration associated with dementia, a group of brain disorders that includes Alzheimer's disease (AD).

Individuals with MCI develop AD at a rate of 15 to 20 percent per year, which is significantly higher than the one to two percent rate for the general population. Some people with MCI remain stable while others gradually decline and some quickly deteriorate.

"Being able to better predict which individuals with MCI are at greatest risk for developing Alzheimer's would provide critical information if disease-modifying therapies become available," said the study's lead author, Linda K. McEvoy, Ph.D., assistant professor in the Department of Radiology at the University of California, San Diego School of Medicine.

... more about:
»MCI »MRI »Radiological Society »brain cell »radiology

Dr. McEvoy and a team of researchers analyzed MRI exams from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a large publicly and privately sponsored study, which performed imaging and other tests on hundreds of healthy individuals and others with MCI and early AD between 2005 and 2010 in hopes of identifying valuable biomarkers of the disease process.

Included in the study were a baseline MRI exam, serving as an initial point of measurement, and a second MRI performed a year later on 203 healthy adults, 317 patients with MCI and 164 patients with late-onset AD. The average age of the study participants was 75.

Using MRI, the researchers measured the thickness of the cerebral cortex — the outermost layer of the cerebral hemispheres of the brain that plays a key role in memory, attention, thought and language — and observed the pattern of thinning to compute a risk score. One of the characteristics of AD is a loss of brain cells, called atrophy, in specific areas of the cortex.

"MRI is very sensitive to brain atrophy," Dr. McEvoy said. "There's a pattern of cortical thinning associated with AD that indicates the patient is more likely to progress to AD."

Using the baseline MRI, the researchers calculated that the patients with MCI had a one-year risk of conversion to AD ranging from three to 40 percent.

"Compared to estimating a patient's risk of conversion based on a clinical diagnosis only, MRI provides substantially more informative, patient-specific risk estimates," Dr. McEvoy said. "The baseline MRI helped identify which patients were at very low risk of progressing to Alzheimer's and those whose risk was doubled."

By combining results of the baseline MRI and the MRI exam performed one year later, the researchers were able to calculate a rate of change in brain atrophy that was even more informative. The MCI patients' risk of disease progression based on the serial MR exams ranged from 3 to 69 percent.

"Rapid thinning of the cortex is reflective of a degenerative disorder," Dr. McEvoy explained.

Although no treatments currently exist that slow or prevent the neurodegeneration associated with AD, Dr. McEvoy said patients at high risk of progressing to AD might want to enroll in clinical trials of disease-modifying therapies. She said the information would also help ensure patients receive optimal care and allow families more time for planning.

"Mild Cognitive Impairment: Baseline and Longitudinal Structural MR Imaging Measures Improve Predictive Prognosis." Collaborating with Dr. McEvoy were Dominic Holland, Ph.D., Donald J. Hagler, Jr., Ph.D., Christine Fennema-Notestine, Ph.D., James B. Brewer, M.D., Ph.D., and Anders M. Dale, Ph.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (

For patient-friendly information on MRI, visit

Linda Brooks | EurekAlert!
Further information:

Further reports about: MCI MRI Radiological Society brain cell radiology

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>