Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI may predict continued decline in patients with mild cognitive impairment

05.10.2010
Using advanced MRI and an artificial intelligence technique, researchers in Geneva, Switzerland, have identified a method that may help identify which individuals with mild cognitive impairment (MCI) will continue to decline, according to a study published online and in the December issue of Radiology.

"We know that about half of all individuals with early-stage mild cognitive impairment will progress to Alzheimer's disease," said lead researcher Sven Haller, M.D, M.Sc., a radiologist at University Hospitals of Geneva. "But not knowing which patients will continue to decline makes it difficult to treat Alzheimer's early in the disease process."

Haller and a team of researchers used two novel techniques to image the brains of 35 control participants (mean age 63.7) and 69 patients with MCI (mean age 65 years), including 38 women and 31 men. Patients were diagnosed with MCI based on a battery of neuropsychological tests, which were repeated on 67 of the patients one year later to determine whether their disease was stable (40 patients) or progressive (27 patients).

Using an advanced technique called susceptibility-weighted MRI, the researchers were able to generate scans with greater detail of the many blood vessels in the brain, including the presence of tiny leaks called microhemorrhages or microbleeds.

"The number of cerebral microbleeds was significantly higher in the individuals with mild cognitive impairment than those in the control group," Dr. Haller said.

The MRI scans revealed microbleeds in 33 percent of individuals with stable MCI and 54 percent of those with progressive MCI. Only 14 percent of the control participants had microbleeds.

The susceptibility-weighted MRI also revealed that compared to the control participants, individuals with MCI had significantly increased iron concentration in certain areas deep within the structure of the brain and reduced levels of iron in others.

"Altered iron distribution in the subcortical nuclei was another distinguishing feature between the healthy control individuals and patients with mild cognitive impairment," Dr. Haller said.

Haller's team also analyzed the MRI data with support vector machines (SVM), an artificial intelligence technique that uses algorithms to identify patterns within a group and create classifications. SVM analysis of baseline MRI data acquired at the initial exam distinguished patients with progressive MCI from those with stable MCI with 85 percent accuracy.

"The goal of my work is to identify biomarkers of mild cognitive impairment that will help us diagnose individual patients at risk for further decline," Dr. Haller said. "Using SVM to analyze iron deposits in the brain may be such a biomarker."

"Cerebral Microhemorrhage and Iron Deposition in Mild Cognitive Impairment: Susceptibility-weighted MR Imaging Assessment." Collaborating with Dr. Haller were Andreas Bartsch, M.D., Duy Nguyen, M.D., Cristelle Rodriguez, M.R.Psychol., Joan Emch, M.R.Psychol., Gabriel Gold, M.D., Karl O. Lovblad, M.D., and Panteleimon Giannakopoulos, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 44,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org
http://RadiologyInfo.org

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>