Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI identifies primary endometrial and cervical cancer

03.05.2011
MRI can determine if a patient has endometrial versus cervical cancer even when a biopsy can't make that distinction, according to a new study. Determining the primary site of a tumor helps determine appropriate cancer treatment.

The study, which is being presented during the American Roentgen Ray Society Annual Meeting on May 3 in Chicago, found that radiologists using MRI could correctly identify the primary site of cancer in 79% of cases (38/48 patients) when biopsy results are inconclusive.

Endometrial and cervical cancers are common cancers in women, said Heather He, MD/PhD, of MD Anderson Cancer Center in Houston, where the study was conducted under the direction of Dr. Iyer and Dr. Bhosale. "In about 3% of the cases, there is difficulty determining the primary cancer site," she added. "Knowing the primary cancer site means that we can give the patients the most appropriate therapy and save some patients from unnecessary surgery," Dr. He said.

Two radiologists read the images as part of the study – one with five years experience and one with 18. Their diagnoses matched most of the time, which means that the readers' experience didn't have much of an impact on the study results, said Dr. He. "MRI can be applied on a broader scope; you don't have to have someone on staff with extensive experience to be able to offer this imaging service," she said.

... more about:
»MRI »biopsy »cervical cancer »sagittal T2 FSE

The study also examined various MR sequences to determine which one was the most useful in making a diagnosis. "We found that sagittal T2 FSE weighted sequences and 2D and 3D T1 weighted dynamic enhanced sequences are the most helpful," Dr. He said.

Keri Sperry | EurekAlert!
Further information:
http://www.arrs.org

Further reports about: MRI biopsy cervical cancer sagittal T2 FSE

More articles from Medical Engineering:

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

nachricht Medicine of the future: New microchip technology could be used to track 'smart pills'
13.09.2017 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>